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Abstract

With data analysis migrating into the realm of big data, storage and analytics
tools that have traditionally worked well in the past have begun to show their
limits. To address the problems with greater volume, velocity, and variety of
data, ClickHouse, among other new technologies, has emerged. ClickHouse is a
column-oriented OLAP DBMS developed at Yandex, open-sourced in 2016, and
in September 2021 was spun out, creating ClickHouse, Inc., reaching a valuation
of two billion US dollars the following month.

This thesis evaluated ClickHouse on telemetry data analysis through experimen-
tal benchmarks based on real use-cases at Axis Communications with real-life
metrics from IoT devices. ClickHouse was compared to the current implemen-
tation comprising Elasticsearch and MinIO as an on-premise solution.

The results established ClickHouse as a suitable candidate to handle the chal-
lenges of big data processing while still being cost-e�ective and highly approach-
able for new adopters.

Keywords: ClickHouse, Big data processing, Data warehousing, Column-oriented database,
OLAP DBMS, Experimental benchmark
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Chapter 1

Introduction

Business intelligence, the practice of analyzing data to gain insights that inform business de-
cisions, is an essential tool in the industry and has been for over three decades. During this
time, the amount of data available and collected has grown substantially. As a consequence,
the limitations of traditionally used data management tools began to make themselves ap-
parent, giving name to the term Big data [94]. Big data is used for data characterized by the
three Vs: Volume (requiring vast storage capacity), Velocity (being created and processed at
high speeds), and Variety (containing complex information) [72, 59, 94]. Madden elegantly
describes it as data that is “too big, too fast, or too hard for existing tools to process” [70].
The three Vs were originally coined in 2001 and have over time grown into the five Vs with
Veracity and Volatility, referring to the quality and durability of the data [59].

To address the problems of big data processing, new technologies are emerging and evolving
at a rapid pace. Over the last decade, several database systems categorized as NoSQL have
entered the market and has seen a drastic increase in popularity as an alternative to the tra-
ditional relational databases [79]. NoSQL is a paradigm that aims to mitigate the limitations
(such as horizontal scalability, i.e., scaling by adding more servers) of conventional relational
databases, by rethinking the requirements of a database system [10]. Relational databases
and NoSQL are covered in further detail in sections 2.1.1 and 2.1.2. One particular NoSQL
database that has appeared recently and that this thesis will focus on is ClickHouse.

ClickHouse is a column-oriented database management system for online analytical process-
ing (OLAP) [13] initially developed at Yandex for their web analytics service Yandex.Metrica
in 2009 [12]. In 2016, ClickHouse was open-sourced and in September 2021 ClickHouse, Inc.
was created as a spin-out from Yandex [74], reaching a valuation of two billion US dollars
the following month [16]. ClickHouse boasts high-performance analytics for large amounts
of data in real-time. This thesis aims to evaluate these claims in a real-world setting.
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1. Introduction

1.1 Problem statement
The department of Diagnostics and Data Management (henceforth referred to as DDM) at
Axis face challenges in scaling up their device analytics. The current solution relies primarily
on Elasticsearch which can handle large amounts of data, with flexible schemas (i.e., the
logical structure of data entities can vary). The downside with Elasticsearch is that it is
very costly with regard to both storage and memory, as well as being slow at ingesting data
(i.e., importing and processing data). As a consequence, only a few months of data is indexed
and processed at DDM. This constraint imposes great limitations on the analysis workflow
in certain teams, to the extent that it virtually eliminates any valuable time-series analysis.
Hardware designers, for example, may need temperature statistics over several years to make
sustainable decisions for future devices regarding assembly and materials. To work around
these limitations, MinIO, an object storage solution was introduced that was able to store
longer periods (several years) of highly compressed data. However, this alone does not solve
the shortcomings of Elasticsearch. To enable insights from the entire catalog of source data,
the storage solution was complemented with in-house developed processing scripts.

The internal workflow is not without issues either, requiring a significant amount of time
and e�ort to use and maintain. Such problems are common when trying to expand analysis
tools to match the data size [70]. Another significant aspect is the memory and time require-
ments required to execute the scripts, where out of memory errors and eight hours or more
of processing time is common.

It is clear that in order to handle the five—or even original three—Vs of big data, a more
suitable database solution must be implemented.

1.2 Motivation
A reasonable concern when adopting a new technology is its maturity and production readi-
ness. ClickHouse is still a relative newcomer on the stage of NoSQL databases. In 2016,
ClickHouse was open-sourced [28] and had its documentation translated from Russian to
English, Chinese, and Japanese, increasing its international reach greatly. The spin-out from
Yandex to a separate international company further emphasizes the focus put on bringing
ClickHouse to an international crowd, and their two billion valuation signals great interest
in the technology, yet there is a lack of academic research on ClickHouse. This thesis aims to
give better insights into the advantages and drawbacks of using ClickHouse for storage and
analytics in the realm of big data. The mix of quantitative and qualitative findings presented
in this thesis will be utilized by DDM in their evaluation process of ClickHouse for big data
processing. Companies in similar situations are encouraged to make use of the results as a
foundation for further research in their pursuit to better understand the data they collect.

We aim to answer the following three questions:

RQ1 What is the state of DDM’s big data solution in terms of performance and usability?

RQ2 How can ClickHouse help mitigate issues identified in RQ1 in DDM’s environment?

RQ3 How are existing workflows for data consumers a�ected by migrating to ClickHouse?
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1.3 Related work

1.3 Related work
As previously stated, with ClickHouse being a fairly recent addition in the big data processing
field, the amount of academic research concerning ClickHouse has been fairly limited.

Wickramasekara, Liyanage, and Kumarasinghe [91] compared ClickHouse with MySQL in a
low-performance environment. Benchmarking experiments were performed with 1.5 million
records on a virtual Linux environment with 1 GB RAM and a 1.8 Ghz single-core processor.
The results show that ClickHouse was better at utilizing the given resources and achieved
a lower execution time as well as a higher disk write speed. Although it provided some in-
sights into how resource-e�cient ClickHouse can be, given the small data set and the low
performance environment, it is not really comparable to a real-life industrial setting.

Imasheva et al. [65] studied the replacement of Oracle, a relational database management
system, with ClickHouse. The study defines the term big data according to the three Vs
previously mentioned, and compares the theoretical di�erences between the two databases.
Finally, benchmarking experiments were conducted on the two databases using a 1.5 terabyte
data set. The report shows promising numbers in favor of ClickHouse, citing a notable 2,290
time speedup on reads and 12 time speedup for inserts. While impressive, the authors do not
disclose how the research was conducted, and neither test data nor benchmarks are presented.
As such, it is di�cult to verify the validity of the study. There are nonetheless confounding
factors to consider. The experiments were performed on separate machines, with di�erent
operating systems (Windows and Linux) and clear di�erences in hardware specifications, as
ClickHouse had significantly more memory and CPU cores to work with than Oracle.

Struckov et al. [89] evaluated ClickHouse and compared it to the time-series databases In-
fluxDB and OpenTSDB as well as the PostgreSQL extension TimescaleDB. Generated data
was used with similar characteristics to real data found in three di�erent use cases with vari-
ations in frequency, origin, and time span. The study found that ClickHouse performed well
overall and excelled at ingesting large amounts of data. It performed less well at compressing
the ingested data and filtering it during extraction. The research provides promising insights
into the performance characteristics of ClickHouse using small and synthetic data sets. This
study, on the other hand, is focused on ClickHouse’s performance for real and large-scale
data, to get a better understanding of how capable it would be in an industrial deployment
setting. In addition, there have been several performance improvements in ClickHouse [17]
as it has matured since 2019 when the article was published.

Another study comparing ClickHouse with InfluxDB was performed at CERN by Vasile,
Avolio, and Soloviev [90]. The study sought to find a suitable database candidate that could
handle large amounts of operational monitoring data at high frequency. The work tested
the ingest speed of both databases and found that in five out of six tests, ClickHouse outper-
formed InfluxDB. While ingest speed is an important dimension to consider when evaluating
a database for big data, the read performance of the two databases was not tested.

Alongside the research focused on ClickHouse specifically, research in the field of DBMSs
have also looked at implementing other emerging NoSQL DBMSs for OLAP workloads and
big data aggregations. One example of such being a study by Correia et al. [34] on Apache
Druid, a column-oriented distributed data store. The study evaluated Druid’s performance
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1. Introduction

for OLAP workloads using a synthetic benchmark suite called Star Schema Benchmark, and
looked deeper into query granularity and partitioning to achieve better processing times. In a
follow-up paper [33], many of the same authors evaluated if Druid would hold up as an alter-
native to the SQL-on-Hadoop technologies, Hive and Presto. In all processing benchmarks,
Druid achieved significantly better performance and positioned Druid as a top contender in
the realm of big data processing. Although, the study remarks that other qualities than data
processing need to be considered when looking to adopt a technology.

Another emerging contender for big data processing is Apache Pinot. Like Apache Druid,
it is also a column-oriented distributed data store. Fu and Soman [54] conducted an exper-
imental evaluation including Pinot, Elasticsearch, and Druid in an e�ort to find an OLAP
solution for the big data processing pipeline at Uber. The results of the study show that Pinot
consumed one quarter of the memory and one eight of the disk usage compared to Elastic-
search, as well as lower query latency. Druid, with a similar architecture to Pinot, was not far
o� in performance but Pinot was given the advantage for its implementation of optimized
indices to achieve faster query execution and lower query latency. As the evaluation of the
OLAP layer was only a smaller part of the paper, not a lot of information was given about
how these experiments were conducted and the exact results were not published.

Elasticsearch, a search database, has also been studied for its big data processing capabili-
ties. In a report by Zamfir et al. [93], the authors investigated Elasticsearch as a monitoring
solution for large amounts of log data. The purpose was to create a framework for DevOps
monitoring that could process logs and events in real-time. To do so, an experiment suite was
created using di�erent search and aggregation queries to rate how suited Elasticsearch was for
big data processing. The report concluded that Elasticsearch was an appropriate implemen-
tation for the use case presented. However, with only 25 GB of disk storage, it is questionable
whether the data tested could actually be considered big data, and it is di�cult to general-
ize the findings to apply for larger data sets. Another report by Seda et al. [84], compared
Elasticsearch against MySQL, a relational database management system. In the tests, which
focused on key-value data, Elasticsearch performed approximately five times better than the
worst-case for MySQL, and three times better against MySQL where the key was indexed. It
should be noted, and is mentioned in the report as well, that there are databases better suited
specifically for key-value workloads.

In conclusion, previous studies, albeit few, have been conducted on both ClickHouse and
Elasticsearch. ClickHouse has been noted for its resource e�ciency and being competitive
to both relational DBMSs and time-series databases. The ingest performance in particular is
found to be excellent. Studies more closely focused on the OLAP aspects, however, tend to
focus more on the modeling and structuring of the data, instead of ClickHouse’s performance
operating on the data. And in most work, the benchmarks are synthetic with pre-generated
data. Studies on Elasticsearch seem even more limited, and are largely focused on its charac-
teristics as a search engine for log data, and does not test it for the purpose of analysis that
resembles the situation at DDM.

We found no previous work comparing ClickHouse and Elasticsearch, in any capacity.

10



Chapter 2

Background

To get the most out of this thesis, some key concepts need to be understood as well as some
specific knowledge about our experimental setup that will a�ect our implementation and
evaluation of ClickHouse, Elasticsearch, and MinIO. Therefore, this chapter describes the
current setup at DDM and the concepts that will be used to better understand how Click-
House functions as well as what to consider when evaluating our implementation.

2.1 Database and data storage concepts
We begin by reviewing some essential knowledge about database design and types to under-
stand what makes ClickHouse di�erent from previous database management systems. This is
followed by some concepts that help us evaluate ClickHouse and compare it to the solutions
currently implemented at DDM.

2.1.1 Relational databases
A relational database is a database that is based on the relational model first proposed by
Codd in 1970 [29] and it has been the dominant database type ever since [68]. Since the late
2000s, there has been a growing awareness for other database paradigms such as NoSQL [88].
These will be discussed with greater detail in section 2.1.2.

When the first databases started to emerge in the 1960s [8], there was no widely accepted way
of storing data. Every application used its own unique data structure that required getting
familiar with before being able to utilize the stored information [8]. To make matters worse,
these implementations were often ine�cient, hard to maintain, and hard to optimize [80].
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2. Background

With the adoption of the relational model, developers were provided a standard way of repre-
senting data, freeing them from having to reinvent the wheel every time they wanted to store
data. The model organizes the stored data in a table structure, as shown in table 2.1, where
rows are records and the columns are attributes of the records [80]. This structure allows
the data in the tables to be identified and accessed in relation to each other, i.e., all the data
regarding a specified record (row) can be accessed in its entirety or every record satisfying
a chosen condition for a specified column. The relational model provides a flexible way to
store and access data which made it possible to be used by a large variety of applications,
while also being intuitive and e�cient compared to prior solutions [80].

Table 2.1: A conventional database table structure. Records are rep-
resented by rows, and their attributes by columns.

model_name serial_number . . . max_temp min_temp
ABC 123 . . . 43.47 12.36
. . . . . . . . . 39.42 10.06
ABC 456 . . . 43.56 12.55
. . . . . . . . . 39.98 11.63

Today, the standard way to manage a database is to use a database management system
(DBMS). A DBMS is a software that utilizes a database for storing data and also provides a
façade for defining, constructing, manipulating, and sharing databases among various users
and applications [52]. The abstraction created by the use of a DBMS eliminates the need to
know the details of how the data is stored in the database and focus can instead be directed
at the application using the database. A DBMS that is based on a relational model is also
referred to as a relational database management system (RDBMS) [52].

To communicate with an RDBMS, the standard way is to use Structured Query Language
(SQL) [64]. SQL is a language that enables, in an easy and fairly non-technical way, the
accessing and insertion of data into a database with no need to know how to get the data
and where on the disk the relevant table is stored. Benefits of SQL include the ability to join
tables to create meaningful information by combining data from separate tables. Another
feature that SQL supports is basic data aggregations such as: count, add, and grouping queries
as well as basic math functions. The results can be ordered by any of the columns. Since SQL
is standardized, the same query should work on any compliant RDBMS.

Although a relational database has several benefits, there are a few constraints that need to
be considered; one such consideration is the actual data being stored. A relational database
works best when the data has a known structure (as opposed to unstructured data, such
as images or audio) and can be placed inside a table [68]. To place every data point in its
correct spot a schema needs to be predefined with fixed names and types for the columns [68].
Another constraint that has grown into a considerable problem with the arrival of big data
is how the database scales when handling terabytes or even petabytes of data [94].

ACID
A key feature of most relational databases is their ability to perform work in transactions.
Transactions enable concurrent access to the database by treating one or more operations as

12



2.1 Database and data storage concepts

a single unit of computation. This unit can then be rolled back or committed to the database
depending on the success of each one of its operations. Transactions are possible and safe to
use given four properties: atomicity, consistency, isolation, and durability or ACID [81].

• Atomicity ensures that a transaction is one single unit of computation. All operations
within the transaction must succeed if the transaction is to succeed. Otherwise, the
transaction fails and all operations that have succeeded up to that point are discarded.

• Consistency ensures that a transaction is not committed unless all constraints for
maintaining the data in a correct state are satisfied. Examples of incorrect state in-
cludes having a null value in a non-nullable column or a foreign key that does not exist
or is in other ways invalid. The database is always left in a valid and consistent state.

• Isolation ensures that transactions do not a�ect each other until either has been com-
mitted.

• Durability makes certain that a committed transaction is permanently stored and will
be preserved if the system was to crash.

An ACID-compliant DBMS provides users with strong consistency guarantees for their data.
These guarantees, however, make it di�cult to scale up by distributing the workload over
several machines [10, 88]. To address the shortcomings of ACID, NoSQL databases have
emerged.

2.1.2 NoSQL
There is no consensus on the formal definition of NoSQL, but it has been widely accepted to
mean “Not Only SQL” [10]. NoSQL is an umbrella term comprising databases that oppose the
relational model proposed by Codd. NoSQL gained popularity around 2010 [88] because of
its performance and ease to scale horizontally (as in, distributing the workload over several
machines) [10]. One of the main reasons why NoSQL databases have the ability to scale
is that they often do not provide the guarantees of ACID by default or at all, sacrificing
correctness to leverage greater performance [10]. MongoDB, one of the most popular NoSQL
databases [36, 87] estimate that 80–90% of applications using their database do not need to
make use of ACID transactions [78].

NoSQL databases are often put in one of four groups: key-value stores, graph databases,
document-based stores, and column-oriented databases [68]. Key-value stores indexes keys
pointing to data and is often suitable for caching purposes. Graph databases use graphs
instead of tables as their underlying structure where queries are performed on nodes and
edges. Document-based stores are an unstructured collection of documents. Documents
are usually stored in a structured form but do not have to follow a specific structure or
schema [10]. Column-oriented databases transpose the conventional row layout found in
relational databases. In the row layout, each individual row and the contents of its columns
are stored adjacently in memory and persistent storage [21] as illustrated in table 2.1, making
the complete entry fast to retrieve. In contrast, the column-oriented layout visualized in ta-
ble 2.2 stores all the values of each column next to each other for greater data locality. Data
locality is highly beneficial, or crucial even, for high performance as it decreases the amount
of time needed to seek the data on disk [37]. Data locality makes the column-oriented ap-
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2. Background

proach more e�cient than the row-layout when it is necessary to make computations on a
specific field or aggregate data. A simplified view of data locality is illustrated in fig. 2.1.

Figure 2.1: An illustration of data locality [21]. The colors symbolize
homogeneous data, i.e., contents from the same column.

Consider the case where you are trying to get the average max temperature reported in a de-
vice fleet with model name ABC, using tables 2.1 and 2.2. A row-oriented lookup would have
to fetch every row, checking to make sure that the model_name field matches, before decid-
ing whether to include max_temp in the computation. The column-oriented database on the
other hand, can traverse the model_name column immediately. If model_name[index] is
a match, then max_temp[index] should be included in the computation.

Table 2.2: A column-oriented representation of the data in table 2.1.
Each record is instead represented as a column, and attributes are
stored adjacently in rows.

model_name ABC . . . ABC . . .
serial_number 123 . . . 456 . . .
. . . . . . . . . . . . . . .
max_temp 43.47 39.42 43.56 39.98
min_temp 12.36 10.06 12.55 11.63

CAP
While NoSQL databases benefit from not being ACID-compliant in terms of performance,
they must still adhere to the CAP theorem [10] as a big part of the performance is usually
achieved by adopting a distributed system. A distributed system in this case means using the
hardware components of multiple servers (also referred to as nodes) to distribute the load
between the total available processing, memory, and storage capacity.

The CAP theorem states that any distributed system, in case of a partition, i.e., a communi-
cation breakdown between nodes, can only provide two out of the following three guarantees:
consistency, availability, and partition-tolerance [55].

• Consistency reflects the consistency of data between nodes. If a system is consistent
all nodes will present the same data at the same time for all receiving clients [62].
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2.1 Database and data storage concepts

• Availability means that any request to the system will be answered with a valid response
without exception [62].

• Partition-tolerance means the capability to continue functioning despite the introduc-
tion of any number of partitions within the system [62].

Most NoSQL DBMSs choose to sacrifice consistency [10] as they usually opt for eventual con-
sistency instead. This means that when a node is updated the system is initially inconsistent
before the data has propagated through the whole system and all nodes have become consis-
tent. During this process, the nodes can present di�erent results to users of the system [55].

A system that opts for strong consistency, where all nodes always present the same data re-
gardless of time and place, sacrifices availability as the system needs to block all access to the
nodes until the propagation has completed [55].

Sacrificing partition-tolerance is a special case as it is practically only possible for single-node
systems where there can be no partitions. Furthermore, sacrificing it for a distributed system
is still a debated area as this would require a fault-free network between the nodes, and this
is not a feasible assumption in 2021 [9].

The author of the CAP theorem, Brewer published a follow-up article in 2012 [9] where he
emphasizes that the CAP theorem is not to be seen as binary where one of the properties is
chosen completely on the behalf of the other. Instead, it is to be seen as a gradual range and
modern databases should strive to maximize the combinations of consistency and availability
to make sense for its specific use-case.

2.1.3 OLAP
Online analytical processing (OLAP) is a type of software system used to perform large-scale
analysis at high speeds [85]. The term was first coined by Codd, Codd, and Salley in 1993 [30]
as a counterpart to the conventional online transaction processing (OLTP) systems due to
new requirements for data analysis being established. As OLTP systems are typically used
to handle the day-to-day operations of a company they are optimized for handling smaller
operations numbering in the thousands to millions from equally many users such as ATM
deposits or updating the inventory of products [2]. Consequently, the underlying database in
OLTP systems is most often a relational or ACID-compliant database where a mix of inserts,
updates, and deletes are happening within transactions.

OLAP on the other hand focuses on data extraction for business intelligence purposes where
data is rarely modified once it has been inserted [85]. Thus, they are primarily optimized for
processing massive amounts of data needed for analysis with query intensive workloads, i.e.,
consisting mostly of heavy read operations, from much fewer users numbering in the tens
and hundreds contrary to OLTP systems [2]. This is achieved by sacrificing the ability to
alter the handled data, sometimes even restricting it to be read-only or append-only [2].

Codd, Codd, and Salley also popularized the use of the multidimensional conceptual view for
OLAP systems [30]. In a multidimensional model, the objects of analysis are called measures.
These are most often numeric to facilitate di�erent kinds of aggregations such as the sum,
average, max, or min functions [11]. Examples of this could be the number of sales of a product
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Figure 2.2: Demonstration of a data cube (Left) with a concrete ex-
ample with the average memory usage for P1455-LE cameras using
firmware version 1.0.1 on the 28th December 2021 (right).

or how much memory a camera is using. The measures are in turn dependent on so-called
dimensions, these provide context for the measures. Examples include time and firmware,
which enables the aggregation of sales for a specific product during a specific time, or how
much memory a camera with a specific firmware is using [11]. There can be hierarchies within
dimensions, often in the form of a one-to-many relationship. A good example of this is the
time dimension where a month consists of days and days consist of hours. The standard way
to describe the relationship between dimensions and measures is by the use of a data cube [11],
as demonstrated in fig. 2.2. The data cube is also a suitable medium to represent some popular
OLAP operations [11], namely the slice, dice, roll-up, and drill-down operations.

The slice and dice operations are used to select a subset of the data in the cube, where slicing
discards a dimension (thus reducing dimensionality) while dicing applies filters to one or
more dimensions, reducing their size [11].

Roll-up and drill-down are opposites, where roll-up means going up in the concept hierarchy
and often looking at the bigger picture [2]. This could be a result of aggregating the measures
in another dimension or grouping them in a certain way [2]. An example of a roll-up operation
would be to group measures in the time dimension by months or years instead of days. A drill-
down would go the opposite way in the hierarchy and look at data measured in smaller time
increments, like minutes or seconds [2]. All OLAP operations are demonstrated in fig. 2.3.

2.1.4 Object storage
Object storage is a high-level abstraction for cross-platform data sharing [73]. Objects elim-
inate complexities and scalability issues found in block-based file systems. Each object is a
self-contained unit comprising data, metadata, and identification [63, 73]. Object storage has
become increasingly popular with the advent of cloud providers o�ering cheap and massively
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Figure 2.3: Demonstration of the OLAP operations on the data cube.

scalable [63] storage for images, videos, binary data and other unstructured data. AWS S3,
launched in 2006, stored one trillion objects in 2012 [6] and 100 trillion objects by 2021 [7].

2.1.5 Data compression
Compression is a process used to reduce the size of input data by removing redundancy [83].
While it does play an important role in DBMSs simply by minimizing the disk space required
for a given data set, there is a lot more to it than just storage space. Using compression, you
increase the information density of your data, meaning that less data needs to be transferred
to and from disk as well as between the client and server [58, 82], trading CPU time for
higher e�ective bandwidth of both disk and network. Higher bandwidth will in turn im-
prove the speed of query processing [58, 82]. Compression can also be used for indexes in a
database, which helps speeding up query processing by more e�ciently evaluating boolean
expressions [67] and improving the memory utilization of indexes [57].

The importance of compression in DBMSs increases with growing amounts of data; even a
small amount of compression can make a di�erence of hundreds of gigabytes if the input data
is large enough. With larger data sets the amount of redundant data is likely to be higher,
meaning that the compression can be more e�ective [83]. The importance of compression is
also reflected in the query processing performance on that data, specifically the seek time,
i.e., the time it takes to find the information asked for, grows with the amount of data needed
to traverse before arriving at the correct place on the physical disk [58].

Another point of interest for compression is the data locality discussed in section 2.1.2 and
visualized in fig. 2.1. A lower data cardinality (number of distinct values), and lower relative
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entropy (di�erence between adjacent data points) leads to more e�cient compression [1, 57].
Column-oriented DBMSs are especially suited to take advantage of this fact by storing the
data column-wise, lowering the relative entropy [1].

Algorithms used for compression are typically classified as either lossy or lossless. A lossy
compression algorithm will discard data that by some heuristic is considered less important,
resulting in an approximate representation of the original data [83]. Lossless compression on
the other hand preserves all the original data. When comparing compression algorithms, one
is usually interested in the compression ratio (size of the output divided by the input size) [83]
and the speed at which the data may be encoded or decoded. The freedom to discard data
generally means that lossy algorithms can achieve a higher compression ratio than lossless
algorithms [83]; for the purpose of this thesis, where data is archived and analyzed, lossless
compression is the preferred choice.

In this thesis, we will focus on lossless algorithms only, specifically Snappy [86] and LZ4 [69]
as those are already in use or will be used in the experiments presented later in this thesis.
Common for these algorithms is that they aim for speed first and compression ratio second,
making them viable for real-time compression.

2.2 Data storage products
It is clear that there are several distinct paradigms to follow on how to persistently store
data, and with each paradigm, there are plenty of implementations available to choose from.
In this section we present the products that are part of DDM’s current setup and finally the
contender: ClickHouse. Table 2.3 showcases the main di�erences between these products.

2.2.1 Elasticsearch
Elasticsearch by Elastic is a distributed search and analytics engine and NoSQL DBMS [41],
based on Apache Lucene, a Java library providing “powerful indexing and search features, as
well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities” [3].
Elasticsearch is a document-based store designed to be fast for schema-flexible data (docu-
ments), expressed in JSON. Incoming data is indexed by default to provide responsive and
easy-to-use search functionality [39] and Elasticsearch is built to scale by distributing the
workload over several machines (i.e., horizontal scaling) in clusters [48].

Elasticsearch o�ers an HTTP API where the database can be queried using a query language
based on JSON [46]. Optionally, one may use Elastic’s scripting language Painless to perform
computations on the query results as well as update the database. Painless is out of scope
for this thesis and will not be explored further. Elasticsearch is part of the Elastic Stack
and is commonly paired together with Kibana [45], a visualization product tailor-made for
Elasticsearch, to create dashboards and visualizations to gather insights from business data.
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2.2.2 MinIO
MinIO is an open-source object storage server implementation, designed to be compatible
with S3, the object storage product o�ered by Amazon Web Services (AWS) [77]. It features a
distributed mode, allowing you to pool together multiple drives and machines in one object
storage server [75]. MinIO o�ers an HTTP API for transferring files and managing the server.

2.2.3 ClickHouse
ClickHouse is an open-source column-oriented OLAP DBMS designed for real-time analyt-
ics. It was initially developed at Yandex for their web analytics service Yandex.Metrica [12], but
was later open-sourced [28] and, in 2021, spun out to a separate company [74]. ClickHouse is
called a “true” column-oriented DBMS by its developers, because it stores no metadata along
with the values [20]. This is claimed to be one of its biggest advantages for the OLAP scenario,
as it minimizes the so-called unnecessary data and maximizes the processing throughput [20].

Similar to Elasticsearch, ClickHouse can be deployed as part of clusters. When deployed in
a cluster, ClickHouse utilizes parallel and distributed query processing, and it is designed to
scale linearly with added instances, meaning that there is a proportional increase in database
throughput and/or storage when adding instances to the cluster [14]. ClickHouse clusters are
coordinated by Apache ZooKeeper, an open-source server for coordination of distributed
applications [15]. At the time of writing, the ClickHouse developers are working on their
own coordination software to replace ZooKeeper, called ClickHouse Keeper [15].

The query language used in ClickHouse is a dialect of SQL that is largely compatible with
ANSI standardized SQL, with additional functionality for analysis [20]. ClickHouse o�ers
APIs to communicate with the DBMS over HTTP, native TCP, and gRPC [22].

ClickHouse is optimized for an OLAP workflow and has some limitations when compared
to an RDBMS: no support for transactions, only partial (and nonstandard) implementation
of UPDATE/DELETE queries, and it being ine�cient at retrieving single rows of data [20].

Table 2.3: Comparison of data storage products.

MinIO Elasticsearch ClickHouse
DBMS No Yes Yes
Storage model Object storage Document store Columnar
Query language RESTful API JSON DSL SQL
Data compression No Yes (LZ4) Yes (LZ4, Zstd)
Interfaces HTTP HTTP HTTP, TCP, gRPC

2.3 Data analysis context at DDM
In 2019, Axis decided to put a larger focus on data collection and analysis, and created the
department for Diagnostics and Data Management, or DDM for short. This means that a
growing section of their device catalog is o�ered with cloud integration and opt-in device
diagnostics, commonly referred to as telemetry.
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This section will give a more detailed depiction of how the handled data is structured, how
the current data handling is set up, and finally some examples of how the data is then used.

2.3.1 Current setup
As DDM is still in its infancy, the current solution that we will explain has been developed
from what was originally conceived as a proof of concept (PoC). The original goal of the PoC
was to optimize storage use (the proprietary storage back-end in use at DDM is comparatively
expensive) while still being able to retain and analyze as much historical data as possible. As
such, compromises were made that limits the amount of useful analysis that can be performed.

Data structure
The metrics data comprises hundreds of device diagnostics measures but the most important
include memory usage and this is what our data set is centered around. The data contains four
dimensions: time, product, executable, and firmware. The product dimension is a hierarchy
of attributes, in order of increasing granularity: product type, serial number, and boot ID.

Data pipeline
As visualized in fig. 2.4, each unit in Axis’ device fleet emit metrics at semiregular intervals
that, given that the owner has opted in, are shared with DDM. Initially, metrics were directly
inserted into an on-premise Elasticsearch cluster to enable analysis of the incoming data.
Elasticsearch was chosen for its ease of use, speed, and familiarity among the data scientists
at DDM. Using tools like Kibana, the Elasticsearch cluster can be queried e�ciently from a
web interface with the results presented as easily digestible visualizations and dashboards.

Soon, however, as the amount of data grew it became evident that Elasticsearch was not the
ideal choice for meeting DDM’s needs of both analysis and long term storage. With memory
and storage usage increasing, so did also the cost for the backing hardware, and it was later
decided too expensive to continue using Elasticsearch for all collected data. Instead, MinIO
was introduced to act as long-term storage where all current and historical metrics could be
stored. Elasticsearch is then loaded with the last three months of metrics stored in MinIO.

Before being inserted into MinIO, metrics are processed in a pipeline as seen in fig. 2.4. The
pipeline processes the semi-structured metric data according to a schema and partitions it
by the hour that they were emitted. Finally, the data is stored in an Apache Parquet file,
a columnar storage format [4], and compressed using Snappy (yielding a compression ratio
ranging from 2:1–20:1 depending on the type of metric). This process requires on average ten
minutes per hour of incoming metrics.

To perform analysis reaching beyond the three most recent months, DDM developed their
own processing scripts to access long-term metrics directly from MinIO. These scripts are
developed in Python, using the popular data analysis library Pandas [32] to perform compu-
tations. We are not at liberty to disclose the exact workings of these processing scripts, but
the pseudocode in listings 1 and 2 should be su�cient to understand the general idea. The
scripts are divided into two parts as seen in fig. 2.5: extraction and analysis.
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Figure 2.4: Overview of the big data processing pipeline at DDM.

for partition in storage:
take valuable columns where EXPRESSION
encode category, compression, metadata...
write preprocessed partition to disk using new partition schema

Listing 1: The extraction part of the processing scripts.

In the extractor for the on-premise object storage, raw data, partitioned per hour, is down-
loaded and filtered to only contain the data needed for further analysis in order to maximize
the possible amount of valuable data to be stored in memory. These preprocessed files are
then stowed away in a temporary workspace where they can be used for analysis.

for partition in preprocessed partitions:
load data frame (into memory) from partition on disk
perform analysis on the data frame

Listing 2: The analysis part of the processing scripts.

The preprocessed results are then loaded into data frames, using Pandas, and executed. The
entire pipeline process is visualized in fig. 2.4.
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Figure 2.5: Compute pipeline from MinIO storage.

2.3.2 Use cases
The primary purpose of DDM is to provide other departments (the data consumers) with the
necessary insights to manage their objectives, goals, risks, and problems. The term “necessary
insights” is vague and means di�erent things for most data consumers, as there are certain
types of analyzes that are must-haves while some would only be considered nice-to-have. One
of the more useful capabilities is to be able to draw correlations between di�erent sets of data.
Due to the inherent limitations of Elasticsearch at performing joins in the relational sense,
drawing correlations between di�erent sets of data requires much e�ort and consideration.
It also requires duplicating some of the data, in other words its not something to be done
carelessly when trying to minimize storage use. Along with the join limitations, there is
also the need for data analysis over a longer period that simply uses too much memory in
Elasticsearch forcing DDM to resort to their time-consuming analysis scripts. Percentiles,
residuals, and techniques such as linear regression are di�cult—or even impossible— to use
in an online real-time fashion today.

Below is a list of five data analysis use cases for DDM. All data extractions are handled using
Elasticsearch and Kibana dashboards today, and only the last use case makes use of MinIO.
As our test data (further explained in section 3.2.2) contains memory usage metrics, we will
focus on such use cases too. The use cases were chosen to give a good diversity of di�erent
data aggregations and use of the OLAP operations present in DDM data analysis.

These use cases will be explored further in our experiments as part of chapter 3.
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UC1: Memory usage per executable and firmware
Firmware is generally developed in low-level programming languages on embedded devices
with constrained resources. The combination of these factors makes memory leaks a severe
risk. Consequently, metrics on memory usage within devices are of great interest to both
firmware and plugin developers. A heat map displaying this sort of information can be seen
in fig. 2.6 where executables are lined up on the vertical axis with the firmware version on
the horizontal axis, creating a grid. The cell of each grid is gradually saturated as the memory
usage for that combination of executable and firmware increases.

To put this in the context of OLAP this use case would, with memory usage as the rele-
vant measure, utilize the roll-up operation as far as possible in two dimensions, i.e., the time
and product dimensions. This reduces the dimensionality to two dimensions saving the exe-
cutable and firmware dimensions. The aggregate function used in the roll-up operations can
be changed according to the goal of the analysis, e.g., the AVG function would give a good
overview of the memory usage for each combination while the MAX function could be used
to find outliers. In fig. 2.6 the AVG function is used.

Figure 2.6: Heat map showing memory usage per executable and
firmware. The color legend has been redacted.
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UC2: Memory usage for one device over time
In fig. 2.7, the average memory usage on the entire device is shown over time, with one week
passing between each tick on the horizontal axis. In a two-week interval, a slight reduction
can be seen followed by an even bigger dip before the graph is restored to its earlier appear-
ance. Investigating further into these dips, one may find that the device was rebooted due to
power outages, memory leaks, or that the device was going through a firmware upgrade.

This use case first slices the data in the product dimension to filter out an individual camera.
Then, it is rolled-up with the AVG function in the time dimension to group the data by weeks.

Figure 2.7: Average memory consumption for one device over time.
An upward trend may indicate memory leaks, and may be identified
by drill-down. Labels on the Y axis have been redacted.

UC3: Number of devices transmitting metrics
To verify that the metric collection works, and to just get a sense of the device distribution
over time, one may consult the dashboard in fig. 2.8. From the dashboard one can easily see
the number of unique devices, grouped by product model, that transmits metrics to DDM.

Here, the data is simply rolled up in the product dimension using a COUNT UNIQUE function
to group all product types, and show the number of transmitting devices per hour.
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Figure 2.8: Interactive line graph displaying the number of unique
devices transmitting metrics over time, grouped by product model.
Labels on the Y axis have been redacted.

UC4: Memory usage for specific executable per product model
Axis has a wide o�ering of products, each with its own composition of hardware and software.
To make sure that the firmware is functioning, it can be useful to track memory usage outliers
over di�erent models. In fig. 2.9, a visualization is seen displaying the average memory usage
for one specific executable on the vertical axis and di�erent product models on the horizontal
axis. From fig. 2.9, we can see that there might be reason to investigate “Model 1”.

In the OLAP context, a slice is used to filter out a specific executable and the resulting data
is rolled-up in the product dimension to individual product types with the AVG function.

UC5: Raw data extraction
A problem with databases, as reported by Madden [70], is that while they might be able to
scale well for large amounts of data, they cannot o�er as sophisticated analysis as client-side
computation tools such as R [53] or Matlab [71]. For DDM to retain their advanced analysis
scripts, they must be able to extract data that has already been ingested.
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Figure 2.9: The average memory usage for one executable over dif-
ferent product models. Labels on the Y axis have been redacted.
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Chapter 3

Method

The research methodology chosen for our research was Experimental Research. This method-
ology will aid us in answering our research questions in a formal and scientific way, giving
reliability and validity to our results. This chapter gives some theoretical background on ex-
perimental research, an overview of our approach, and defines our experiment design. Lastly,
we describe each of our experiments more in detail.

Experimental research is characterized by having a fixed design with three key elements [61].
It typically includes formulating a hypothesis based on the goals of the research, choosing
independent variable(s) that can a�ect the result, and dependent variables that can be mea-
sured and compared. If a hypothesis is formulated, it needs to be testable so that the research
results either support or reject it [61]. While the results primarily consist of quantitative data
gathered by measuring the dependent variables, there can be room for di�erent assessments
regarding the interpretation of the data. To provide reproducible and legitimate results it
is important that the experiments are carried out in a controlled environment where every-
thing except the independent variables stays the same [61]. The methodology is suitable for
studying the causes of di�erent phenomena as well as comparing multiple technical solutions
to each other in specific use cases [61]. The latter applies to this project, i.e., we design a suite
of benchmarking experiments to compare di�erent data storage solutions. Note that we do
not express any formal hypotheses followed by inferential statistics in our work. Instead, we
follow an empirical standard proposal by Hasselbring [60]. In practice, we used Hasselbring’s
proposed standard as a checklist to ensure that the essential attributes of benchmarking stud-
ies have been reported. Unfortunately, we will not be able to provide a replication package,
proposed as one of the attributes, since many of the components used in the experiments are
proprietary in some way.

27



3. Method

Table 3.1: Overview of our experiments, mapped to relevant exper-
imental variables involved in each experiment.

Experiments Dependent variable Independent
variable

Fixed variables

Exp A: Ingest Ingest Time
Exp B: Storage Storage Space

Experiment
Subject

Hardware &
Data set

Exp C.1

Exp C: Extraction
Exp C.2 Capability &

Extraction
Time

...
Exp C.9

3.1 Approach
To answer the performance part of RQ1, we analyzed the current implementation, i.e., Elas-
ticsearch and MinIO at DDM in order to find any bottlenecks that could potentially be
solved or at least mitigated by introducing another DBMS. To then answer how ClickHouse
could mitigate the issues found in RQ1 for RQ2 we needed to know how well ClickHouse
would perform in the same use-cases and context as the current implementations. There-
fore, following our needs to answer RQ1 and RQ2 we chose to conduct the following three
benchmarking experiments:

• Exp A: Ingestion time.

• Exp B: Disk space usage.

• Exp C: Data extraction (capability to perform the extraction and if so, the time it takes)
divided into sub-experiments: C.1–C.9.

In table 3.1 we present an overview of the experiments as well as determining the experimen-
tal variables involved in each experiment. For brevity and ease of comprehension we will from
here on out refer to our three experimental subjects: Elasticsearch, MinIO, and ClickHouse
as ELASTIC, MINIO, and CLICKH, respectively.

The results from these three experiments will provide us with su�cient data to compare
their performance within the DDM data processing pipeline. We will then conduct open in-
terviews with data scientists at DDM based on the results in to find out how existing work-
flows will be a�ected by migrating to CLICKH, answering RQ3. The interviews will be used
alongside our subjective experiences of conducting the experiments as a basis to answer RQ1
in terms of usability. ISO 25010 defines usability as the “Degree to which a product or sys-
tem can be used by specified users to achieve specified goals with e�ectiveness, e�ciency and
satisfaction in a specified context of use.” [66]. The results of our interviews as well as our
interpretation will be presented in section 5.2 in the discussion chapter.
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Experiment 
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Figure 3.1: Overview of controlled experiment. The arrow shows
that Exp B depends on Exp A succeeding.

3.2 Experimental design
In fig. 3.1 we give an overview of our experimental setup. Our experimental subjects, MINIO,
ELASTIC, and CLICKH, are represented by the input arrow from the left depicting our
independent variable for each experiment. The independent variable will be subjected to
experiments A, B, and C. Time-consuming experiments A and B were repeated three times
for each subject. Experiment C, however, is divided into nine smaller sub-experiments: C.1–
C.9 and repeated ten times for each sub-experiment and subject. The results will be based on
our 11 experiments and sub-experiments, yielding 33 experimental runs and 288 data points.

For all experimental runs, we used the same hardware and data sets, referred to as our fixed
variables in table 3.1 and depicted as the vertical arrows in fig. 3.1. In the same figure, the
dependent variables are displayed as arrows exiting the experiment.

The following subsections define our fixed variables: hardware specifications and data set, as
well as our setup for each experimental subject. We also specify our benchmark design for
each of the main experiments: A, B, and C.

3.2.1 Hardware specifications
To be able to fairly evaluate the aforementioned experimental subjects, we configured a dedi-
cated server (henceforth SERVER) and a virtual machine (CLIENT) in an isolated and man-
aged environment. Both machines were running Ubuntu 20.04 LTS and equipped with hard-
ware according to table 3.2. Detailed hardware specifications can be found in appendix A.

Furthermore, Elastic recommends disabling swapping when running Elasticsearch [40]. Swap-
ping is a mechanism used to free up memory by temporarily moving data to disk. Swapping
can significantly impact performance [40] and as such, was disabled on SERVER for all tests.
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Table 3.2: Technical specifications for SERVER (left) and CLIENT
(right), both running Ubuntu 20.04 LTS.

CPU Intel Xeon-G 5220R
RAM 96 GB

Storage 13.5 TB SATA SSD (RAID0)
Network 10 Gbit/s

CPU 12 vCPUs (Intel Xeon-G 6230)
RAM 62 GB

Storage 500 GB SATA SSD
Network 1 Gbit/s

3.2.2 Test data
The test data that will be used for all experiments consists of continuously sampled time-
series metrics from Axis’ devices detailing their memory usage. It is the largest set of metrics
collected by DDM, with documents comprising 35 di�erent attributes, collected at high fre-
quency. Roughly one third of the attributes are strings and the rest are signed 64-bit integers.
Only two string attributes are non-nullable: the device serial number and boot identifier. A
timestamp attribute stores the date and time when the document was collected. The test data
covers two full months of real metrics and amounts to approximately one terabyte of data
over 11,880,623,162 documents from 110,471 unique devices. As described in section 2.3.1,
the metrics are stored in Apache Parquet files that are compressed using Snappy with a com-
pression ratio of approximately 2:1.

3.2.3 Experimental subjects setup
This section describes how we configured all experimental subjects before running any ex-
periments, and how we run them in order to perform said experiments. For the exact setup
commands used, see appendix B.

We used Docker to run all test subjects. Docker enables us to run applications in container-
ized form, where instead of installing and configuring the software and all of its dependencies,
we download an o�cial image that is ready to go with everything bundled together [38]. The
image is launched in a sandboxed container, and in order to communicate with the outside
world, we map ports on the host machine to forward tra�c to ports in the container over
a virtualized network interface. To utilize persistent storage, we mount volumes inside the
container, thus creating a file system bridge between the host machine and the container.

MINIO
To replicate the object storage solution that is in use at DDM today, we used the o�cial
Docker image published by MinIO Inc. on Docker Hub. We used the latest release version at
the time of testing, tagged RELEASE.2021-11-03T03-36-36Z [76].

There was no configuration to the MinIO server, all options were set to their default values.

ELASTIC
To get Elasticsearch operational, we followed the o�cial documentation using Docker for a
single-node deployment [43]. We used the latest version at the time of testing: 7.15.2.
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In order to begin using Elasticsearch in production, some configuration is recommended for
optimal performance. We followed the o�cial recommendations for running Elasticsearch
in production [44] and performed the following changes:

• Increase the limits on virtual memory mappings, to 262,144 memory map areas to avoid
out of memory exceptions in Elasticsearch.

• Increase the limits on open files inside the docker container, to a maximum of 65,536
open file descriptors.

As already mentioned in section 3.2.1, swapping was disabled as well.

Elasticsearch indexes data to achieve high search performance. However, for search per-
formance and error recovery, Elastic recommends limiting the size of said indexes [42]. In
addition, for time-series data that is append-only, they recommend using so-called Data
streams [47]. Data streams allow for automatic rollover when the index has reached a cer-
tain threshold in either size, document count, or age [47]. As a result of only performing
the tests on a single-node deployment, we did not need to worry about the implications of
replicas as we would in a cluster. We configured our deployment to use data streams with au-
tomatic rollover after 50 GB of data and even though no replicas were created since we only
deployed a singe-node, we still choose to specify the number of replicas to 0 and the refresh
interval to 60s per recommendations from Elastic as this might improve indexing speed [51].

CLICKH
We started a single-node ClickHouse server inside a Docker container using the o�cial image
published on Docker Hub [18]. We used the latest version at the time of testing: 21.8.11.4.

Before performing the experiment we needed to create a table in which we could ingest data
into. For the exact table created, see appendix B. We defined a simple table structure, without
optimizations, where all numerical attributes were defined as 64-bit integers, and all other
attributes as strings. The only exception being the timestamp attribute, which we stored
as a DateTime, and used to partition the table on a per-month basis, as is recommended
by the ClickHouse developers [19]. The timestamp was also used to order the data as this
felt intuitive for a time-series data set. The table engine chosen was MergeTree since this is
considered the default engine for a singe-node deployment [24].

3.3 Experiments
All benchmarks were executed on CLIENT and test the performance of our experimental
subjects, running on SERVER. For each benchmark, only the actual test subject were running.

3.3.1 Exp A: Ingest
To keep up with the amount of incoming data every hour, a database must be able to ingest
data at a reasonable speed. To test the ingest performance of each experimental subject,we
measured the number of documents or rows the server can receive per second.
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The tests were conducted by transferring data from the file system onCLIENT to each exper-
iment subject running on SERVER. To make the workload sustainable for all tested solutions,
we limited the input data to a subset of the original data. We conducted preliminary testing
to find a subset that would require at least 20 minutes to ingest in order to saturate the link
bandwidth and reduce the impact of potential spikes in the measurement. To simplify test-
ing, the subset should not take longer than ten hours for any subject to ingest. With these
requirements in mind, we chose 10 days of data which amounts to 152 GB or 1,734,529,007
documents stored in 696 Snappy compressed Parquet files.

To test ingestion speed, we set up each implementation as described and performed three
ingest tests for each subject. All data was cleared between runs and the DBMS was restarted.

MINIO
To perform the ingest benchmark, the tool Rclone was used. Rclone was chosen because it
supports a wide array of storage providers, including MinIO, and is easily ran in parallel [35].

$ rclone copy --transfers 12 --checkers 12 \
/path/to/local/data \
minio:bucket/path

The options transfers and checkers sets the number of threads to use for data trans-
fers and checksums. To maximize the transfer speed, all twelve cores on CLIENT should be
running in parallel.

The argument minio is the destination remote, followed by a colon and a path argument.
Remotes are set up by running $ rclone config.

ELASTIC
To ingest data into the Elasticsearch instance, we had to make use of the existing transfer
system, an extract-transform-load (ETL) pipeline, based on the o�cial Elasticsearch Python
library. The pipeline extracts data from the file system, parses it into Pandas data frames
that are then transformed into Elasticsearch-compatible JSON. The JSON is then inserted
into the Elasticsearch server. To maximize performance, the ETL pipeline transfers data in
chunks, performs all work in parallel and utilizes all available CPU cores.

CLICKH
ClickHouse has native support for ingesting Parquet files, greatly simplifying this bench-
mark. Ingesting is just a matter of passing the data to the client’s standard input.

$ clickhouse-client \
--query="INSERT INTO thesis FORMAT Parquet" < data.parquet

To insert multiple files, cat may be used to concatenate the input, which is then piped to
the ClickHouse client for ingestion.

$ cat *.parquet | clickhouse-client \
--query="INSERT INTO thesis FORMAT Parquet"
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However, passing too many files to the client program too quickly will overload it and cause
it to crash. Another thing to note is that the client is not running its queries in parallel1.
To achieve parallel execution, we used GNU xargs to spawn multiple clients, each inserting
one parquet file. Due to memory constraints of CLIENT, we could not run one ingest job
per processor core and still guarantee full ingestion. In addition, to successfully insert all
files, the memory limit per query had to be increased from the default of 10 GB. The setting
max_memory_usage can be set in a configuration file to be persistent or per session as an
argument to the client program. A value of 0 disables the limit, which is what we used as a
session parameter while ingesting data. The finalized insert command can be seen below.

$ ls *.parquet | xargs \
-P8 \ # 8 processes at a time.
-I{} \ # Use `{}` as the placeholder for arguments.
sh -c \
'cat {} | clickhouse-client --max_memory_usage=0' # --query=[...]

3.3.2 Exp B: Storage
The aim of implementing a MinIO storage server was primarily to minimize storage cost.
This will still be of considerable importance when considering a new DBMS and, because of
this, we will compare the disk usage of our di�erent implementations. We will measure this
using the du command, a GNU coreutils program that reports how much of the file system
space is used by the specified set of files [56].

Storage tests were conducted by initially verifying that the mounted data path was relatively
empty before ingesting data. Relatively because each database will persist data to disk im-
mediately upon startup, however no more than around 100 MB. Further storage tests were
conducted after ingest tests and were measured immediately after ingest as well as two hours
after the ingest was done. The two-hour wait is to take into account the e�ects of compres-
sion performed by both ClickHouse and Elasticsearch.

3.3.3 Exp C: Extraction rate
The data extraction rate is an important metric to measure how long it takes to perform var-
ious analytical tasks using each experimental subject. To enable measurements of extraction
rate, we cleared each implementation, removing the data that had been stored for experi-
ments A and B, and instead loaded them with our full test data set described in section 3.2.2.

To ensure measurements that are representative for DDM’s use cases, we created database
queries that we believe o�er a diverse set of results using the same source data. They should
give a suitable representation for each of the di�erent OLAP operations mentioned in sec-
tion 2.1.3. This section describes the experiments. Full queries can be found in appendix C.

For each experimental run, only the tested experimental subject was running on SERVER,
and the relevant benchmark suite on CLIENT. Spot-checks were performed with the process
viewer htop [31] to verify that the benchmarks were running and utilizing CPU as expected.

1Parallel reading is supported with ClickHouse 21.12 [26].

33



3. Method

Exp C.1–C.8
Experiments C.1–C.4 map to use cases UC1–UC4 (section 2.3.2) respectively with one week
of metrics. This gives us a good mix of data analysis present in DDM’s data analysis pipeline.
Exp C.5–C.8 are variations of C.1–C.4, but instead query the full test data set of two months.

We tested ELASTIC andCLICKH by writing queries in their respective query languages and
measured the time it took to get the complete response. To communicate with the HTTP
API exposed by ELASTIC, we used the command line tool curl.

$ curl \
-d @query.json \ # Load request data from the file `query.json`.
-H 'Content-Type: application/json' \ # HTTP header.
"$ELASTIC_URL/index_name/_search"

For CLICKH, we used the o�cial ClickHouse client.

$ clickhouse-client \
-h "$CLICKHOUSE_HOST" \
--query "$SQL_QUERY"

For Exp C.4 and C.7 (UC3 with di�erent amount of metrics), we had to disable the query
memory limit by setting --max_memory_usage=0 like we did for CLICKH in Exp A.

In this series of experiments,MINIOwas immediately disqualified. While they are possible to
test, the analytics scripts are not designed for real-time online analysis, but rather historical
trend analysis for source data spanning several years. Any of our test cases would consume at
least one hour using MINIO as data storage back-end, and they would need custom scripting.

Prior to each test, caches were cleared. To make sure, we waited two minutes before testing.

$ clear-subject-cache \
&& ssh "$SERVER" sh -c \ # Clear SERVER's system cache.
'sync && echo 3 > /proc/sys/vm/drop_caches' \
&& sleep 120

To clear the ELASTIC cache, we sent a POST request to the API endpoint /_cache/clear.
And for CLICKH, we used the ClickHouse client to execute the three following commands:
(1) SYSTEM DROP MARK CACHE, (2) SYSTEM DROP UNCOMPRESSED CACHE, and (3) SYSTEM
DROP COMPILED EXPRESSION CACHE.

Exp C.9: Raw extraction
Experiment C.9 maps to use case UC5. To perform this experiment, we decided to fetch ten
hours worth of data from our two-month range. This should contain 85,939,941 documents
over 7.7 GB when fetched as Parquet files.

For MINIO, we again used Rclone to test the raw transfer speed. Because metrics in MinIO
are partitioned by the hour that they were processed, the timestamp for each individual entry
(corresponding to when the metric was emitted) may not match. Metrics may leak into other
partitions if the processing is lagging behind. To ensure that we extract all metrics for the
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first ten hours, we fetch the eleventh hour as well. It is the responsibility of analysis tools
that operate on the metrics to filter out unwanted timestamps.

ELASTIC does not support explicitly dumping records. Instead, we used the o�cial Python
library to scan through the database and store the resulting JSON files.

With CLICKH, we again decided to use the o�cial ClickHouse client to select all data (in
Parquet format) and redirect the output to a local file.
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Chapter 4

Results

This chapter presents the collected results from our experiments defined in chapter 3. These
results will help answer our research questions: RQ1 to RQ3. The raw data for each experi-
ment run that we base these results on is found in appendix D.

In chapter 5 the results are further investigated and discussed to evaluate our findings.

4.1 Exp A: Ingest
In this experiment, we measured the time required to transfer 152 GB or 1,734,529,007 doc-
uments from CLIENT to SERVER and ingest into each experimental subject. The transfer
rate is presented in table 4.1 and fig. 4.1. The measurement stopped when the transfer pro-
gram exited on CLIENT and does not necessarily measure the time required for all data to
be available for querying on SERVER.

Table 4.1: Ingest speed in Exp A. Higher is better.

Experimental subject Documents/s Mbit/s Relative
MINIO 1,249,660 834.9 100%
CLICKH 861,663 575.9 69%
ELASTIC 38,606 27.06 3%

4.2 Exp B: Storage
When testing the ingest rate, using a subset of the data, we also measured the resulting disk
usage. The averaged storage results are presented in table 4.2 and fig. 4.2.
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Figure 4.1: Results from Exp A. Higher is better.

To provide enough time forCLICKH and ELASTIC to compress the data and clean up inter-
mediate files, we measured both immediately after ingest and after two hours. Measurements
immediately after ingest are noted with parentheses in table 4.2 and are not shown in fig. 4.2.

We were interested in if the disk usage would scale accordingly with an increased amount of
data; After having finished ingesting data for Exp C, we measured the disk usage again and
found the relative disk usage between the experimental subjects to be almost the same. N.B.,
this is purely an observation based on one ingest run, and not part of any defined experiment.

Table 4.2: Disk usage in Exp B. Lower is better.

Experimental subject Disk usage % of source data
MINIO 152 GB (n/a) 100%
CLICKH 186 GB (336 GB) 122% (221%)
ELASTIC 621 GB (624 GB) 408% (410%)

4.3 Exp C: Extraction rate
Our results for experiment C and its sub-experiments, previously presented in section 3.3.3.

• Exp C.1: Memory usage per executable and firmware.

• Exp C.2: Memory usage for one device over time.

• Exp C.3: Number of devices transmitting metrics.

• Exp C.4: Memory usage per executable and product model.

• Exp C.5–C.8 (Exp C.1–C.4 respectively with two months of data).

• Exp C.9: Raw data extraction.
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Figure 4.2: Results from Exp B. Lower is better.

Results for Exp C.1–C.8 are presented in table 4.3 and fig. 4.3 with results for Exp C.9 in
table 4.4 and fig. 4.4. The figures and tables show the averaged execution time over ten runs.
Additionally, the standard deviation is presented in table 4.3. As mentioned in section 3.3.3,
MINIO was not tested in Exp C.1–C.8 and as such, is not shown in table 4.3 and fig. 4.3.

Despite our e�orts to clear Elasticsearch caches before each benchmark run, there were large
di�erences between the initial and following runs in experiments C.2 and C.4 for ELASTIC.
Given the performance of ELASTIC in other tests (in particular the standard deviation),
we suspect that only the first sample is representative, and the rest are incorrectly cached.
However, the average of what we suspect are cached results in C.2 are still approximately 17
times faster than the results in C.4 that we also suspect are cached. This might be because
the query in C.4 is more di�cult to parse or cache, or it might be because these results are
actually correct, and the initial result is flawed, though we can not explain why. In table 4.3,
the results for C.2 and C.4 are presented without the outlier, which is noted in parentheses
instead. We refer readers to the raw results in appendix D.

In experiment C.7, CLICKH failed because the server ran out of usable memory, returning
an error instead of a valid result. This error was consistent over ten runs, so it seems that
the query is not possible to execute in ClickHouse, at least given the table structure we have
implemented. We discuss possible optimizations to the table structure in chapter 5.
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Figure 4.3: Results from experiments C.1–C.8. Lower is better.
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Table 4.3: Experiments C.1–C.8. Results are measured in seconds
and are averaged over ten runs. Lower is better. Values in parenthe-
ses are outliers.

ELASTIC (std) CLICKH (std)
Exp C.1 39.62 0.26 7.63 0.39
Exp C.2 0.04 (3.70) 0.003 4.60 0.12
Exp C.3 232.88 2.63 16.13 0.20
Exp C.4 0.72 (5.76) 0.01 5.36 0.26
Exp C.5 637.54 2.87 55.35 0.34
Exp C.6 183.31 10.05 30.26 0.05
Exp C.7 1,928.60 32.17 Failed Failed
Exp C.8 253.44 15.85 34.83 0.07

Table 4.4: Exp C.9: Raw data extraction speed. Higher is better.

Experimental subject Documents/s Mbit/s Relative
MINIO 1,207,870 865.78 100%
CLICKH 255,774 183.33 21%
ELASTIC 154 0.11 0.001%
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Figure 4.4: Results from Exp C.9. Higher is better. Note that the
bar representing ELASTIC (with a value of 154) is barely visible.

41



4. Results

42



Chapter 5

Discussion

In this chapter, we evaluate the results of our experiments to answer the research questions
we formulated in chapter 1 and propose areas for future work.

5.1 Benchmarking experiments
The benchmarking experiments defined in section 3.1 were conducted to give an indicator on
the current state of DDM’s big data solution (Elasticsearch and MinIO) and how ClickHouse
would perform in its place. Together, the results answer the performance part of RQ1 as
well as RQ2. In the following section, we dive deeper into the results gathered from each
experiment and try to give thoughts on why the results looks like they do and what impact
this has on a big data processing pipeline.

5.1.1 Ingest performance
The first performance indicator likely to be encountered when evaluating di�erent data stor-
age back-ends is how well it handles ingesting large amounts of data. Recall two of the Vs
of big data: volume and velocity, the latter of the two being tested here. From the results in
chapter 4, we saw that ClickHouse fared well at handling large-scale data fast, confirming the
findings of our related work in section 1.3, especially that of Vasile, Avolio, and Soloviev [90].

ClickHouse could ingest documents at almost 70% of the speed compared to MinIO. It should
be noted that MinIO is basically a file system transfer over HTTP, and while the protocol
will induce a slight overhead, the results should be very close to the capacity of the 1 Gb/s
link. When compared to Elasticsearch—which only achieved 3% of MinIO’s speed—we saw
an impressive 21x speedup.
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Exactly why Elasticsearch performed so poorly is unknown to us. The ETL pipeline described
in section 3.3.1 is highly parallelized, and we have verified that the transform step from Par-
quet files to JSON documents introduces marginal overhead compared to the work spent
loading/ingesting the data (in bulk, as recommended by Elastic [51]). One caveat, however,
with Elasticsearch’s ingest is that “When a document is stored, it is indexed and fully search-
able in near real-time” [39], though in our case, this “refresh interval” was configured to be
60 seconds. While it is certainly a feature to have all data be near-instantly searchable, it
might be detrimental to performance when ingesting large amounts, as in our experiment.
We did not verify how fast results became available in ClickHouse, though we did execute
a count query following each ingest to verify that all documents were ingested, which they
were. Still, we cannot say whether the input data was actually queryable at that time.

During setup of the ingest experiment, we found that the limiting factor for ClickHouse
when ingesting in parallel was the client’s memory usage. When passing too many files at the
same time to the ClickHouse client, it would crash. Consequently, to guarantee full ingestion,
we had to limit the client to use only eight parallel processes instead of the available twelve.
After performing the experiments, a new version of the ClickHouse client was released, with
built-in support for parallel inserts. This could result in greater ingest performance as this
is a purpose built tool from the developers at ClickHouse. In addition, it would have greatly
simplified setting up the conducted benchmarking experiment.

When ingesting the full test data set for experiment C into Elasticsearch, the ETL-pipeline
that we had successfully used during our ingest experiments crashed after having processed
approximately ten percent of the data. We are not certain about why it crashed, but given
our time constraints and Elasticsearch’s poor ingest performance we decided it was best to
restart the ingestion process from the position where the crash was encountered. This resulted
in duplicated data that, as a consequence of how Parquet files are laid out (timestamps of
documents in a file do not necessarily match the timestamp of the file), were spread out but
mostly concentrated to one hour. To minimize their impact on our results, we chose to delete
all metrics for this particular hour in all three experimental subjects. Duplicates were still
present after having deleted this hour of metrics, again, due to the Parquet archiving process.
After deletion, there was a 0.00066% di�erence in the number of documents between MinIO
and ClickHouse, where MinIO contained the most documents and ClickHouse the fewest.

5.1.2 Storage
Our results show that ClickHouse, again, performs very similar to MinIO, with only a 22%
increase in storage use compared to the source Parquet files. The same cannot be said for
Elasticsearch, measuring more than 4x the size of files stored in MinIO. When comparing the
results of ClickHouse and MinIO (using Parquet) with the results for Elasticsearch it confirms
the impressive compression e�ciency of column-oriented storage covered in section 2.1.5.

We did see quite a large di�erence between the disk usage for ClickHouse immediately after
ingest and after two hours had passed. It is evident that ClickHouse prioritizes ingesting the
data fully before doing much optimization, this means that it can probably do a better job
when it is time to optimize. Recall from section 2.1.5 that the e�ciency of data compression
generally increases with the amount of raw data. Elasticsearch, on the other hand, did not

44



5.1 Benchmarking experiments

improve the disk usage much over time, which could mean that it tries to optimize immedi-
ately when ingesting. This could also be part of the reason why it was remarkably slower than
ClickHouse at ingesting data as already discussed in section 5.1.1. MinIO is not applicable to
this comparison as it does not try to optimize the data neither during nor after ingest.

The numbers for ClickHouse are very impressive, given that we have not paid any attention
to optimizing the structure of our table and its attributes. Even so, ClickHouse manages to
analyze the data that it is given and optimizes it well. This is promising, as it allows users to
start o� with a naive configuration and optimize it further as they go along. The single most
important choice we made regarding storage use for our ClickHouse deployment was which
key we used to partition the data by as well as by which keys we ordered the data. Our choice
of partitioning by the time dimension on a per-month basis was by far the most intuitive as
the data set consists of time-series data. This is also recommended by ClickHouse as to not
partition with greater granularity than needed, hindering compression [19]. As covered in
section 2.1.5, data locality influences the compression rate and by partitioning the data by a
less appropriate key would have a large negative impact on our results.

We believe there are several optimization techniques that could be applied to our ClickHouse
setup for greater results, both in terms of storage and execution time. Firstly, choosing ad-
equate data types for our attributes would allow ClickHouse to compress the data further.
Having attributes being both nullable and 64-bit signed integers may be too permissive, given
the domain of the data. Furthermore, there are columns that have very low cardinality (that
is, the set of distinct values is small), such as the executable name for a process. ClickHouse
has built-in support to encode such information, whereby it will use more e�cient compres-
sion. With low-entropy (“predictable”) values, it is possible to use specialized compression
codecs. For time-series data, such as the data used in this thesis, ClickHouse recommends
using the DoubleDelta codec on the timestamp column for optimal compression rate [25].

With Elasticsearch, few optimizations have been implemented at DDM, and carried over to
our experiments, to manage increasing storage needs. The most meaningful is using data
streams where append-only indices roll over after reaching a size of 50 GB, and are automat-
ically removed after 90 days. Additionally, the segments within indices are forcefully merged
together and shrunk to remove redundant data and increase search performance. These op-
timizations are recommended by Elastic in general [50] and have been recommended specif-
ically for DDM by Elastic consultants. Additional improvements could be made for Elastic-
search in terms of storage use, such as enabling the DEFLATE codec for better compression
instead of the default (LZ4), and disabling full-text indexing for strings (used for search).
These improvements have been tested at DDM, but were considered to be too large compro-
mises of the usability of the Elasticsearch workflow, and have not been implemented.

5.1.3 Extraction rate
Similar to our previous experiments, we saw that ClickHouse performed very well. In sub-
experiments where both succeeded with reproducible results, ClickHouse was 5–14x faster
than Elasticsearch. When comparing raw data extraction, ClickHouse was barely five times
slower than copying the data directly from MinIO, while yielding comparably small, Par-
quet formatted, output files. The files we stored from Elasticsearch were unmodified JSON
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responses from the search query API, that were saved to disk in batches. The main benefit
with both ClickHouse and Elasticsearch compared to MinIO is of course the ability to filter
data before extracting it. With Parquet files stored in MinIO, you can only filter on parti-
tioned columns, whereas with ClickHouse and Elasticsearch you can leverage the full power
of the query engine and filter, group, or aggregate data before downloading it. This not only
reduces network and disk usage on the client, it also eliminates the processing time required
to transform the extracted data on the client side, enabling it to proceed immediately to
analysis of the data.

The largest point of interest that deserves closer inspection are the results from Exp C.2 and
C.4. As mentioned in section 4.3, we suspect that we did not succeed in clearing the cache
from Elasticsearch between each run for both experiments. It would make logical sense,
as in both experiments it was the initial run that was an outlier and performed more in
line with the rest of the sub-experiments, while the following nine runs reached results far
outperforming the first run which makes us suspect that they are using the cached results from
the first run instead of actually performing the query on the data. Again, we refer readers
to appendix D for the exact results. We did wait for two minutes to give Elasticsearch ample
time to clear the cache, and evidently, that was enough for the rest of the experiments where
this phenomenon is not present, but not for C.2 and C.4.

An observation regarding both Exp C.2 and C.4 is that they are also the most filtered queries
and should result in the least documents needed to be returned. This could be the reason for
the uncleared cache but if the initial result is any indication to go by, the results are way more
competitive, and even better for Exp C.2, to those of ClickHouse, a clear di�erentiation from
the rest of the experiments. Di�erent results depending on the type of query was of course
to be expected and one of the reasons for diversifying the queries in the sub-experiments to
begin with. Although, we are not certain, we do believe the more filtered types of queries
better reflects the strengths of Elasticsearch, i.e., Lucene, through its blazingly fast lookups
for specific documents in large amount of data. For aggregated queries, however, it is not as
fast as ClickHouse, which can utilize vectorized queries and SIMD instructions [27].

Lastly, in our extraction experiments, we were limited to two months of data because of hard-
ware and time restrictions, mostly because the time it took to ingest data into Elasticsearch
was a slow process when compared to ClickHouse. As a result, we were restricted from bench-
marking data extraction queries with a time span longer than two months. We therefore do
not know how any of the subjects would scale when aggregating data spanning several years
which is a desirable use-case at DDM. This is especially interesting as ClickHouse crashed
due to reaching the memory usage limit during sub-experiment C.7. We do, however, know
that by optimizing either the data types in the table as mentioned in section 5.1.2 or the query
we could have gotten a valid result, but again, this was not tested due to time restrictions.

5.2 Usability and workflow
To answerRQ3, we conducted open interviews with three data scientists at Axis, asking them
how their workflow would be a�ected by faster queries and a larger span of metrics. We use
these answers in conjunction with our own experiences of conducting the experiments to get
a grasp of the implications on usability and workflow by migrating to ClickHouse.
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The main benefit of a faster querying capacity, as pointed out by all of our interviewees, was
the ability to work in a more agile manner. With a constant feedback loop, there would be
fewer context switches and a more e�cient workflow. It would enable data scientists to test
their way forward with greater ease and help debugging. In our experiments we noted that
ClickHouse was not only quite fast, it was also very stable, with low variation in execution
time. Elasticsearch on the other hand managed well for queries on small subsets of metrics
(Exp C.1–C.4), but with comparably high variation except for the results we believe were
cached. The most di�cult experiment for Elasticsearch was Exp C.9, where we tested raw
data extraction, to see how it and ClickHouse performed compared to MinIO, which was
initially implemented at DDM to enable large extraction of time partitioned data. As we
have mentioned previously, such kind of extraction might be necessary when the tools pro-
vided by Elasticsearch or ClickHouse are insu�cient to provide the analysis needed, such as
machine learning scripts or analysis requiring complex joins of data sets. ClickHouse too was
outperformed clearly by MinIO, but on the other hand produced comparable output files,
which was not the case for Elasticsearch, where we just dumped the server-sent JSON to disk
in batches, making the processing down the line more complicated as it has to piece together
the files. In contrast to MinIO, both support filtering the data before downloading it, which
should make them much faster when extracting dimensions other than time.

When asked about a larger span of metrics, our respondents replied that it is useful, espe-
cially for hardware designers that want to assess hardware sustainability over longer periods
of time, often several years. In such cases, a larger span of metrics would yield more reliable
results. It could also enable the teams to observe slow moving or seasonal trends, and perform
predictive maintenance. In our experiments, ClickHouse performed much better than Elas-
ticsearch at ingesting and storing large amounts of data, and it scaled considerably better in
all but one extraction test. The exception being Exp C.3, where it failed when scaling up the
amount of metrics (Exp C.7). We suspect this might be caused by our lack of optimizations,
as previously discussed. However, given the rest of our results, and ClickHouse’s e�cient
disk usage, we believe it may be a suitable candidate for even larger sets of metrics.

Another factor to take into consideration under usability is the feature set provided by the ex-
perimental subjects. A particular problem with MinIO is the opacity of Parquet files, mean-
ing that it is very di�cult to verify the content of the data without downloading the entire
file or data set. This leads to larger limitations, for instance, it is very di�cult to update or
delete data because the data set requires lots of time and work to go through. The long lead
times make it very inconvenient to fix schema changes, duplicated data, or resolving GDPR-
related privacy issues. Updates and deletions are supported directly in Elasticsearch, though
we have noted from the team at DDM that updates in particular are very slow, and do not
work well with data streams and automatic rollover, as old indices are automatically set to
read-only for performance reasons. ClickHouse supports asynchronous updates and deletes,
though they are not compliant with standard SQL.

The ability to combine data from di�erent data sets into one is very powerful in analyt-
ics. In ClickHouse this is supported using the SQL-compliant join operation, albeit without
query optimization [23]. Unfortunately, we did not have the time to perform any such ex-
periments, but we do know that such operations are not supported in Elasticsearch, which is
why for some data sets, DDM has been forced to denormalize the data before ingesting it as a
workaround to get the desired analytics. With MinIO, it would be necessary to download the
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necessary Parquet files from all data sets and then build a new, denormalized data set locally
before proceeding with processing, increasing the already substantial extraction time.

Lastly, we will discuss the ease of use for each of the respective subjects. As we have ex-
plained earlier in this thesis, the interfaces to interact with the individual subjects are quite
di�erent. MinIO supports fetching files from its object storage over HTTP. This operation
could be considered easy, or even beginner friendly, given only fundamental knowledge in
command line tools or scripting. MinIO even o�ers a web-based object browser, enabling
users to navigate and download objects/files using their web browser. It is significantly more
di�cult, however, to perform filtering and analysis on the downloaded files. At DDM, data
scientists use Python and the popular data analysis library Pandas, o�ering a powerful suite
of tools to gather insights from data. This requires knowledge on how to parse Parquet files,
transforming them to Pandas data frames and then using the Pandas API to get the desired
output. Given that the end user can write and understand basic Python code, there is still a
significant learning curve that needs to be considered.

Elasticsearch o�ers a more integrated solution, using a query engine to filter data before serv-
ing it to the user. To do so, the user can use a JSON based query language (see appendix C to
get a sense of how one would write such a query) or by using an extension enabling “SQL-like”
queries [49]. JSON, like most serialization formats, is easy to read and parse for computers,
but less ergonomic and intuitive for humans to read and write. Our experience writing these
queries was that they are very verbose, and it is not always obvious how a query should be
written to be e�cient. For instance, in most of our queries to Elasticsearch, we specify the
size attribute on the root level of the query object to be zero. This is because Elasticsearch
may return both the aggregation you have asked for, and the most matching search results
for your query, the latter of which is rather expensive. If the size attribute is omitted, the
default of ten is chosen, which makes the query execution significantly slower. That said,
Elasticsearch is oftentimes paired with Kibana, a visualization software developed for Elas-
ticsearch by Elastic. This web-based tool o�ers a no-code toolkit to create visualizations and
dashboards, abstracting away the Elasticsearch queries from users. It should, in our opinion,
be considered a necessity alongside an Elasticsearch deployment for e�ective analysis.

ClickHouse on the other hand, is powered by a dialect of SQL, a standardized language that
has been used to query databases for decades, and is prominently used both in academia and
the industry. The syntax of SQL is short and declarative, making it easy to read for humans
and potentially minimizing bugs. It is still powerful, and most databases make use of a query
engine that tries to optimize the query before traversing the stored data. The query language
is composable, and enables queries within queries (sub-queries) as well as joins to combine
multiple tables into one result. It is suitable for querying structured data, and its widespread
use makes it more likely that data scientists have had experience with it before, making it
possible for them to get started and feeling comfortable with the system faster. We would
claim that ClickHouse with SQL is the most accessible of the experimental subjects covered
in this thesis, apart from visualization software like Kibana. An alternative to Elasticsearch
and Kibana is Apache Superset, a “modern data exploration and visualization platform” [5],
that should o�er a Kibana-like experience powered by SQL databases. We have not examined
it in this thesis, but it is something we would recommend exploring further in comparison
with Elasticsearch-backed Kibana.
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5.3 Threats to validity
There are a number of threats to the validity of this thesis that need to be mentioned. These
threats can be categorized as threats to internal validity and external validity [92].

5.3.1 Internal validity
Internal validity refers to the confidence that the independent variable has not been a�ected
by confounding factors [92]. For example, we had issues with Elasticsearch in certain extrac-
tion tests where we could not be sure whether the results returned were cached or not, and
if we could have configured our setup di�erently to avoid the situation.

In terms of configuration, it is important to once again point out that we set up our subjects
with very little configuration, and relying mostly on the default settings. With Elasticsearch,
we replicated the few relevant configurations from DDM’s production setup, such as dis-
able swapping and increase the refresh interval to improve indexing speed. Furthermore, the
ETL-processing scripts, developed at DDM and responsible for ingesting Parquet files into
Elasticsearch, have been optimized over time to maximize performance for ingest by tuning
the size of the bulk requests and the number of threads sending data to Elasticsearch.

Because of the requirement to use JSON, we had to write our own script to perform Exp C.9
as well. Like the ETL scripts, this was written in Python using the o�cial Elasticsearch
library by Elastic. To verify that no scripts were responsible for slowing down our tests, we
performed spot-checks using htop on both systems. Doing so, we observed only short bursts
of CPU usage on the client while preparing data for ingest and when saving data to disk
during extraction. When observing the dedicated server, we noted the opposite e�ect. Thus,
we feel confident that there was very little performance impact imposed by the scripts.

Finally, the quality of the network link between our two systems should be considered. The
experiments were performed with on-premise machines at Axis, albeit in di�erent server
halls. The systems reached each other over a shared connection, over which we had no control,
and so the amount of tra�c may have varied greatly over the course of the day.

5.3.2 External validity
External validity refers to the degree of confidence that the results of our experiments can be
generalized to industrial practice [92]. In that case, the experiments we have performed, while
using real used-in-production metrics, they are also proprietary making the tests di�cult to
reproduce or generalize beyond the table structure that we have disclosed. In addition, the
experiment suite is synthetic, and all tests are run in isolation. This is preferable for accurate
results, but it is not representative for how the di�erent subjects perform during everyday
workloads, where data may be consumed and ingested simultaneously.

The selection of data scientists at DDM that we interviewed are both consumers and main-
tainers of the current implementation, and have certain experience with the current system
and its methods for querying and analyzing data, which is di�erent from ClickHouse SQL.
Future studies are needed to ensure generalizability to data scientists without this bias.
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5.4 Future work
All the experimental subjects studied in this thesis have been configured as as single-node
deployment. However, they all support clustering of multiple servers in some way or form.
Implementing all three subjects in a clustered setup would be interesting to investigate how
this would a�ect our results and if any of the subjects would benefit more by this than the
others. Therefore, testing our subjects in a clustered setup is recommended as future work.

An important limitation in this thesis is that our approach to configuring ClickHouse is
rather naive and there is still a lot of optimization that can be implemented and tested for an
improved result. An experimental test suite with fully optimized subjects would show their
upper limits and could be compared to the results presented here. We would recommend
future work with ClickHouse, mainly taking into consideration the e�ects of optimizing the
table structure as already outlined in section 5.1.2.

Our research has been centered around the current setup at Axis, and consequently, compared
ClickHouse first and foremost to Elasticsearch. This is however not a perfect apples-to-apples
comparison in an OLAP workflow and we would encourage further research to explore other,
either column-oriented DBMSs such as Druid and Cassandra, or a more traditional approach
used in big data workflows such as Apache Spark, using experiments similar to ours.

An initial goal was to explore long-reaching trend analysis using ClickHouse, to see if it could
replace not only Elasticsearch, but also the use of MinIO at DDM. Unfortunately, we found
ourselves constrained for both time and storage space on the dedicated server to extend the
time span of our experiments much longer. Such tests could also make use of more advanced
analysis features in ClickHouse, beyond the simple aggregations presented in this thesis.

In addition, we initially wanted to test the real-time analysis use case for the experimental
subjects discussed, but found no reliable or reproducible way to carry out experiments in this
manner. By real-time, we mean the case where the database is actively serving other users,
like ingesting data at the same time that it is being queried. To accurately benchmark this
scenario, we believe it would be necessary to create an experimental test suite that would
take into account the di�erence in ingest performance to verify the results of the extracted
data. It is also fair to point out that in a real scenario, ClickHouse, and probably even more
so Elasticsearch, would benefit greatly if they were permitted to cache common requests.

As mentioned in section 5.2, both Elasticsearch and ClickHouse (because it uses SQL), can
be integrated with visualization software such as Kibana and Apache Superset respectively
to assist users in gathering insights, using beginner-friendly no-code toolkits. We did not
explore these tools in this thesis, but feel that a comparison in accessibility would be suitable
to test how viable ClickHouse would be as an Elasticsearch replacement in environments
where the intended audience may have less technical proficiency.

50



Chapter 6

Conclusion

Our thesis work aimed to investigate whether ClickHouse was a suitable candidate for big
data processing. Specifically for DDM, we were interested to find if it could match, or even re-
place their current processing pipeline that is mainly dependent on Elasticsearch for insights
on recent data and MinIO for long-term storage. With several terabytes of metrics being
produced per month, it is fair to classify the workload as big data, which requires carefully
chosen tools to manage and process.

The existing implementation has managed the incoming data with decent results since it was
introduced, but as we saw when we delved deeper into the current setup, aiming to answer
RQ1, there are lots of compromises involved. Compromises that would be highly beneficial
to avoid, mainly having a 90-day limit on metrics being processed by Elasticsearch, but also
the significant added complexity, not only by maintaining two di�erent data stores, but also
having to extract and transform compressed metrics in order to process them on the client.

The findings of RQ1 showed us that the challenge of big data processing is composed of
three important problems. We identified these problems as ingesting data, extracting data,
and storing the data e�ciently. Having identified these problems, we set out to create a suite
of experimental benchmarks that would saturate the capability of each experimental subject
for the given problem, thus helping us answer RQ2.

Using our benchmark suite, we saw that ClickHouse was, in spite of our naive configuration
with very little optimizations, quite adept at handling the challenges we set it up for, with
remarkable performance shown specifically in our benchmarks of ingest speed and storage
use. Extraction performance was impressive too, outperforming Elasticsearch in most query
types. For the rest, our unoptimized configuration was likely the limiting factor, yielding an
experiment that ClickHouse could not successfully finish, and two in which its performance
was comparable, though slightly worse, to Elasticsearch.
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Our last goal was to investigate the usability impact a migration to ClickHouse would imply
for the users, and we answeredRQ3 by presenting our findings fromRQ2 to data scientists at
Axis, together with our subjective experiences during the course of the thesis work. We found
that having faster queries and a larger archive of metrics to query, could yield significant
improvements in e�ciency by enabling a more agile workflow, with fewer context switches,
easier schema migrations and faster debugging. In addition, we found that Elasticsearch is
neither intuitive nor concise to query using the provided query language, and using MinIO
for analysis requires knowledge of programming as well as a data analysis toolkit. Meanwhile,
ClickHouse, using a standardized query language in SQL, will naturally be more familiar and
approachable to experienced users and beginners respectively.

To summarize, we found that ClickHouse is a suitable candidate for big data processing. As
indicated by our results, it is well suited for handling incoming data at large scale, and stores
it e�ciently too, which allows it to scale very well. It has fast extraction rate for di�erent
queries, and by being su�ciently fast at extracting raw data, o�ers a convenient escape hatch
when client-side computing is needed.

We feel confident in recommending the use of ClickHouse for big data processing at DDM.

52



References

[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. “Integrating compression and
execution in column-oriented database systems”. In: Proceedings of the 2006 ACM SIG-
MOD international conference on Management of data (2006).

[2] Alberto Abelló and Oscar Romero. “On-Line Analytical Processing”. In: Encyclopedia
of Database Systems. Ed. by Ling Liu and M. Tamer Özsu. New York, NY: Springer New
York, 2016, pp. 1–7. isbn: 978-1-4899-7993-3.

[3] The Apache Software Foundation. Apache Lucene. url: https://lucene.apache.
org/ (visited on Jan. 11, 2022).

[4] The Apache Software Foundation. Apache Parquet. url: https://parquet.apache.
org/ (visited on Oct. 8, 2021).

[5] The Apache Software Foundation. Superset. url: https://superset.apache.org/
(visited on Jan. 14, 2022).

[6] Je� Barr. Amazon S3 – The First Trillion Objects. 2012. url: https://aws.amazon.
com/blogs/aws/amazon- s3- the- first- trillion- objects/ (visited on
Dec. 14, 2021).

[7] Je� Barr. Celebrate 15 Years of Amazon S3 with ‘Pi Week’ Livestream Events. 2021. url:
https://aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-
is-still-day-1-after-5475-days-100-trillion-objects/ (visited on
Dec. 14, 2021).

[8] Kristi Berg, Dr. Tom Seymour, and Richa Goel. “History Of Databases”. In: Interna-
tional Journal of Management & Information Systems (IJMIS) 17 (Dec. 2012), p. 29. doi:
10.19030/ijmis.v17i1.7587.

[9] Eric Brewer. “CAP twelve years later: How the "rules" have changed”. In: Computer 45.2
(2012), pp. 23–29.

[10] Rick Cattell. “Scalable SQL and NoSQL Data Stores”. In: SIGMOD Rec. 39.4 (May
2011), pp. 12–27. issn: 0163-5808.

53

https://lucene.apache.org/
https://lucene.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://superset.apache.org/
https://aws.amazon.com/blogs/aws/amazon-s3-the-first-trillion-objects/
https://aws.amazon.com/blogs/aws/amazon-s3-the-first-trillion-objects/
https://aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
https://aws.amazon.com/blogs/aws/amazon-s3s-15th-birthday-it-is-still-day-1-after-5475-days-100-trillion-objects/
https://doi.org/10.19030/ijmis.v17i1.7587


REFERENCES

[11] Surajit Chaudhuri and Umeshwar Dayal. “An Overview of Data Warehousing and
OLAP Technology”. In: SIGMOD Rec. 26.1 (Mar. 1997), pp. 65–74. issn: 0163-5808.

[12] ClickHouse Inc. ClickHouse History. url: https://clickhouse.com/docs/en/
introduction/history/ (visited on Dec. 22, 2021).

[13] ClickHouse Inc. ClickHouse Inc. url: https://clickhouse.com/docs/en/ (visited
on Mar. 8, 2022).

[14] ClickHouse Inc. ClickHouse Inc.url: https://clickhouse.com/ (visited on Dec. 22,
2021).

[15] ClickHouse Inc. ClickHouse Keeper. url: https://clickhouse.com/docs/en/
operations/clickhouse-keeper/ (visited on Dec. 22, 2021).

[16] ClickHouse Inc. ClickHouse raises a $250M Series B at a $2B valuation.. .and we are hiring.
url: https://clickhouse.com/blog/en/2021/clickhouse-raises-250m-
series-b/ (visited on Jan. 11, 2022).

[17] ClickHouse Inc. ClickHouse release v21.8, 2021-08-12. 2021. url: https://clickhou
se.com/docs/en/whats-new/changelog/#clickhouse-release-v21-8-
2021-08-12 (visited on Dec. 23, 2021).

[18] ClickHouse Inc. ClickHouse Server Docker Image. url: https://hub.docker.com/
r/clickhouse/clickhouse-server/ (visited on Dec. 8, 2021).

[19] ClickHouse Inc. Custom Partitioning Key. url: https://clickhouse.com/docs/
en/engines/table-engines/mergetree-family/custom-partitioning-
key/ (visited on Jan. 11, 2022).

[20] ClickHouse Inc. Distinctive Features of ClickHouse. url: https://clickhouse.com/
docs/en/introduction/distinctive-features/ (visited on Dec. 22, 2021).

[21] ClickHouse Inc. Evolution of Data Structures in Yandex.Metrica. 2016. url: https://
clickhouse.com/blog/en/2016/evolution- of- data- structures- in-
yandex-metrica/ (visited on Oct. 8, 2021).

[22] ClickHouse Inc. Interfaces. url: https://clickhouse.com/docs/en/interface
s/ (visited on Dec. 22, 2021).

[23] ClickHouse Inc. JOIN. url: https://clickhouse.com/docs/en/sql-referenc
e/statements/select/join/#performance (visited on Jan. 14, 2022).

[24] ClickHouse Inc. MergeTree Engine Family. url: https://clickhouse.com/docs/
en/engines/table-engines/mergetree-family/ (visited on Jan. 11, 2022).

[25] ClickHouse Inc. TABLE. url: https://clickhouse.com/docs/en/sql-referen
ce/statements/create/table/#create-query-general-purpose-codecs
(visited on Jan. 12, 2022).

[26] ClickHouse Inc. What’s New in ClickHouse 21.12. 2021. url: https://clickhouse
. com / blog / en / 2021 / clickhouse - v21 . 12 - released / #from - infile -
in-clickhouse-client-now-supports-glob-patterns-and-parallel-
reading (visited on Jan. 11, 2022).

[27] ClickHouse Inc. Why ClickHouse Is So Fast? url: https://clickhouse.com/docs/
en/faq/general/why-clickhouse-is-so-fast/ (visited on Jan. 16, 2022).

54

https://clickhouse.com/docs/en/introduction/history/
https://clickhouse.com/docs/en/introduction/history/
https://clickhouse.com/docs/en/
https://clickhouse.com/
https://clickhouse.com/docs/en/operations/clickhouse-keeper/
https://clickhouse.com/docs/en/operations/clickhouse-keeper/
https://clickhouse.com/blog/en/2021/clickhouse-raises-250m-series-b/
https://clickhouse.com/blog/en/2021/clickhouse-raises-250m-series-b/
https://clickhouse.com/docs/en/whats-new/changelog/#clickhouse-release-v21-8-2021-08-12
https://clickhouse.com/docs/en/whats-new/changelog/#clickhouse-release-v21-8-2021-08-12
https://clickhouse.com/docs/en/whats-new/changelog/#clickhouse-release-v21-8-2021-08-12
https://hub.docker.com/r/clickhouse/clickhouse-server/
https://hub.docker.com/r/clickhouse/clickhouse-server/
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key/
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key/
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key/
https://clickhouse.com/docs/en/introduction/distinctive-features/
https://clickhouse.com/docs/en/introduction/distinctive-features/
https://clickhouse.com/blog/en/2016/evolution-of-data-structures-in-yandex-metrica/
https://clickhouse.com/blog/en/2016/evolution-of-data-structures-in-yandex-metrica/
https://clickhouse.com/blog/en/2016/evolution-of-data-structures-in-yandex-metrica/
https://clickhouse.com/docs/en/interfaces/
https://clickhouse.com/docs/en/interfaces/
https://clickhouse.com/docs/en/sql-reference/statements/select/join/#performance
https://clickhouse.com/docs/en/sql-reference/statements/select/join/#performance
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/
https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/
https://clickhouse.com/docs/en/sql-reference/statements/create/table/#create-query-general-purpose-codecs
https://clickhouse.com/docs/en/sql-reference/statements/create/table/#create-query-general-purpose-codecs
https://clickhouse.com/blog/en/2021/clickhouse-v21.12-released/#from-infile-in-clickhouse-client-now-supports-glob-patterns-and-parallel-reading
https://clickhouse.com/blog/en/2021/clickhouse-v21.12-released/#from-infile-in-clickhouse-client-now-supports-glob-patterns-and-parallel-reading
https://clickhouse.com/blog/en/2021/clickhouse-v21.12-released/#from-infile-in-clickhouse-client-now-supports-glob-patterns-and-parallel-reading
https://clickhouse.com/blog/en/2021/clickhouse-v21.12-released/#from-infile-in-clickhouse-client-now-supports-glob-patterns-and-parallel-reading
https://clickhouse.com/docs/en/faq/general/why-clickhouse-is-so-fast/
https://clickhouse.com/docs/en/faq/general/why-clickhouse-is-so-fast/


REFERENCES

[28] ClickHouse Inc. Yandex Opensources ClickHouse. 2016. url: https://clickhouse.
tech/blog/en/2016/yandex-opensources-clickhouse/ (visited on Sept. 20,
2021).

[29] Edgar F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In: Commun.
ACM 13.6 (June 1970), pp. 377–387. issn: 0001-0782.

[30] Edgar. F. Codd, S. B. Codd, and Columbus Salley. “Providing OLAP to User-Analysts:
An IT Mandate”. In: 1993.

[31] Htop contributors. htop—an interactive process viewer. url: https : / / htop . dev/
(visited on Feb. 27, 2022).

[32] Pandas contributors. Pandas - Python Data Analysis Library. url: https://pandas.
pydata.org/ (visited on Feb. 27, 2022).

[33] José Correia, Carlos Costa, and Maribel Yasmina Santos. “Challenging SQL-on-Hadoop
Performance with Apache Druid”. In: Business Information Systems. Ed. by Witold Abramow-
icz and Rafael Corchuelo. Cham: Springer International Publishing, 2019, pp. 149–161.
isbn: 978-3-030-20485-3.

[34] José Correia, Maribel Yasmina Santos, Carlos Costa, and Carina Andrade. “Fast Online
Analytical Processing for Big Data Warehousing”. In: 2018 International Conference on
Intelligent Systems (IS). 2018, pp. 435–442. doi: 10.1109/IS.2018.8710583.

[35] Nick Craig-Wood and Rclone contributors. Documentation - Rclone. url: https://
rclone.org/docs/ (visited on Nov. 17, 2021).

[36] DB-Engines. DB-Engines Ranking - Trend Popularity. 2021. url: https://db-engines
.com/en/ranking_trend (visited on Dec. 26, 2021).

[37] Peter J. Denning. “The Locality Principle”. In: Commun. ACM 48.7 (July 2005), pp. 19–
24. issn: 0001-0782.

[38] Docker. What is a container? url: https://www.docker.com/resources/what-
container (visited on Dec. 13, 2021).

[39] Elastic. Data in: documents and indices. url: https://www.elastic.co/guide/
en/elasticsearch/reference/7.15/documents-indices.html (visited on
Dec. 13, 2021).

[40] Elastic. Disable swapping. url: https://www.elastic.co/guide/en/elasticsea
rch/reference/7.15/setup-configuration-memory.html (visited on Dec. 6,
2021).

[41] Elastic. Elasticsearch. url: https://www.elastic.co/elasticsearch/ (visited
on Dec. 13, 2021).

[42] Elastic. How many shards should I have in my Elasticsearch cluster? url: https://www.
elastic.co/blog/how-many-shards-should-i-have-in-my-elasticsear
ch-cluster (visited on Dec. 30, 2021).

[43] Elastic. Install Elasticsearch with Docker. url: https://www.elastic.co/guide/
en/elasticsearch/reference/7.15/docker.html (visited on Dec. 8, 2021).

[44] Elastic. Install Elasticsearch with Docker - Using the Docker images in production. url: http
s://www.elastic.co/guide/en/elasticsearch/reference/7.15/docker.
html#docker-prod-prerequisites (visited on Dec. 8, 2021).

55

https://clickhouse.tech/blog/en/2016/yandex-opensources-clickhouse/
https://clickhouse.tech/blog/en/2016/yandex-opensources-clickhouse/
https://htop.dev/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://doi.org/10.1109/IS.2018.8710583
https://rclone.org/docs/
https://rclone.org/docs/
https://db-engines.com/en/ranking_trend
https://db-engines.com/en/ranking_trend
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/setup-configuration-memory.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/setup-configuration-memory.html
https://www.elastic.co/elasticsearch/
https://www.elastic.co/blog/how-many-shards-should-i-have-in-my-elasticsearch-cluster
https://www.elastic.co/blog/how-many-shards-should-i-have-in-my-elasticsearch-cluster
https://www.elastic.co/blog/how-many-shards-should-i-have-in-my-elasticsearch-cluster
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/docker.html#docker-prod-prerequisites
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/docker.html#docker-prod-prerequisites
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/docker.html#docker-prod-prerequisites


REFERENCES

[45] Elastic. Kibana: Explore, Visualize, Discover Data. url: https://www.elastic.co/
kibana/ (visited on Feb. 27, 2022).

[46] Elastic. Query DSL. url: https://www.elastic.co/guide/en/elasticsearch/
reference/7.15/query-dsl.html (visited on Dec. 14, 2021).

[47] Elastic. Rollover. url: https://www.elastic.co/guide/en/elasticsearch/
reference/7.15/index-rollover.html (visited on Nov. 24, 2021).

[48] Elastic. Scalability and resilience: clusters, nodes, and shards. url: https://www.elas
tic.co/guide/en/elasticsearch/reference/7.15/scalability.html
(visited on Dec. 13, 2021).

[49] Elastic. SQL Overview. url: https://www.elastic.co/guide/en/elasticsear
ch/reference/7.15/sql-overview.html (visited on Jan. 14, 2022).

[50] Elastic. Tune for disk usage. url: https://www.elastic.co/guide/en/elastics
earch/reference/7.15/tune-for-disk-usage.html (visited on Jan. 5, 2021).

[51] Elastic. Tune for indexing speed. url: https : / / www . elastic . co / guide / en /
elasticsearch/reference/7.15/tune-for-indexing-speed.html (visited
on Jan. 5, 2021).

[52] Ramez Elmasri and Sham Navathe. Fundamentals of database systems. Pearson/Addison-
Wesley, 2004. isbn: 0321204484.

[53] The R Foundation. R: The R Project for Statistical Computing. url: https://www.r-
project.org/ (visited on Feb. 27, 2022).

[54] Yupeng Fu and Chinmay Soman. “Real-Time Data Infrastructure at Uber”. In: Proceed-
ings of the 2021 International Conference on Management of Data. New York, NY, USA: As-
sociation for Computing Machinery, 2021, pp. 2503–2516. isbn: 9781450383431. url:
https://doi.org/10.1145/3448016.3457552.

[55] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services”. In: SIGACT News 33.2 (June 2002), pp. 51–
59. issn: 0163-5700.

[56] GNU. du: Estimate file space usage. url: https://www.gnu.org/software/coreu
tils/manual/html_node/du-invocation.html#du-invocation (visited on
Dec. 13, 2021).

[57] J. Goldstein, R. Ramakrishnan, and U. Shaft. “Compressing relations and indexes”. In:
Proceedings 14th International Conference on Data Engineering. 1998, pp. 370–379.

[58] G. Graefe and L.D. Shapiro. “Data compression and database performance”. In: [Pro-
ceedings] 1991 Symposium on Applied Computing. 1991, pp. 22–27.

[59] Cornelia Hammer, Diane Kostroch, and Gabriel Quiros. Big Data: Potential, Challenges
and Statistical Implications. Sta� Discussion Notes. International Monetary Fund, 2017.
isbn: 9781484310908.

[60] Wilhelm Hasselbring. “Benchmarking as Empirical Standard in Software Engineering
Research”. In: Evaluation and Assessment in Software Engineering. EASE 2021. Trondheim,
Norway: Association for Computing Machinery, 2021, pp. 365–372. isbn: 9781450390538.

56

https://www.elastic.co/kibana/
https://www.elastic.co/kibana/
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/index-rollover.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/index-rollover.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/scalability.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/scalability.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/sql-overview.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/sql-overview.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/tune-for-disk-usage.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/tune-for-disk-usage.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/tune-for-indexing-speed.html
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1145/3448016.3457552
https://www.gnu.org/software/coreutils/manual/html_node/du-invocation.html#du-invocation
https://www.gnu.org/software/coreutils/manual/html_node/du-invocation.html#du-invocation


REFERENCES

[61] Martin Höst, Björn Regnell, and Per Runesson. Att genomföra examensarbete. Studentlit-
teratur AB, 2006. isbn: 978-91-44-00521-8.

[62] IBM Cloud Education. CAP Theorem. 2019. url: https://www.ibm.com/cloud/
learn/cap-theorem (visited on Dec. 12, 2021).

[63] IBM Cloud Education. Object Storage. 2019. url: https://www.ibm.com/cloud/
learn/object-storage (visited on Dec. 23, 2021).

[64] IBM Cloud Education. Relational Databases. 2019. url: https://www.ibm.com/
cloud/learn/relational-databases (visited on Sept. 24, 2021).

[65] Baktagul Imasheva, Nakispekov Azamat, Andrey Sidelkovskiy, and Ainur Sidelkovskaya.
“The Practice of Moving to Big Data on the Case of the NoSQL Database, Clickhouse”.
In: Optimization of Complex Systems: Theory, Models, Algorithms and Applications. Ed. by
Hoai An Le Thi, Hoai Minh Le, and Tao Pham Dinh. Cham: Springer International
Publishing, 2020, pp. 820–828. isbn: 978-3-030-21803-4.

[66] iso25000.com. Usability. url: https://iso25000.com/index.php/en/iso-
25000-standards/iso-25010/61-usability (visited on Jan. 14, 2022).

[67] Theodore Johnson. “Performance Measurements of Compressed Bitmap Indices”. In:
VLDB. 1999.

[68] Neal Leavitt. “Will NoSQL Databases Live Up to Their Promise?” In: Computer 43.2
(2010), pp. 12–14.

[69] LZ4 contributors. LZ4. url: https://lz4.github.io/lz4/ (visited on Sept. 21,
2021).

[70] Samuel Madden. “From Databases to Big Data”. In: IEEE Internet Computing 16.03 (2012),
pp. 4–6. issn: 1941-0131.

[71] Mathworks. MATLAB. url: https://mathworks.com/products/matlab.html
(visited on Feb. 27, 2022).

[72] Monerah Al-Mekhlal and Amir Ali Khwaja. “A Synthesis of Big Data Definition and
Characteristics”. In: 2019 IEEE International Conference on Computational Science and En-
gineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing
(EUC). 2019, pp. 314–322. doi: 10.1109/CSE/EUC.2019.00067.

[73] M. Mesnier, G.R. Ganger, and E. Riedel. “Object-based storage”. In: IEEE Communica-
tions Magazine 41.8 (2003), pp. 84–90.

[74] Alexey Milovidov. Introducing ClickHouse, Inc. 2021. url: https://clickhouse.
com/blog/en/2021/clickhouse-inc/ (visited on Sept. 20, 2021).

[75] MinIO Inc. Distributed MinIO Quickstart Guide. url: https://docs.min.io/docs/
distributed-minio-quickstart-guide.html (visited on Jan. 11, 2022).

[76] MinIO Inc. minio/minio:RELEASE.2021-11-03T03-36-36Z. url: https://hub.docke
r.com/layers/minio/minio/RELEASE.2021-11-03T03-36-36Z/images/
sha256-65d1540c0ee7f34036a0013ed8e6740c6260da98822657492bed8eb4b
27a491b?context=explore (visited on Dec. 13, 2021).

[77] MinIO Inc. The MinIO quickstart guide. url: https://docs.min.io/ (visited on
Dec. 2, 2021).

57

https://www.ibm.com/cloud/learn/cap-theorem
https://www.ibm.com/cloud/learn/cap-theorem
https://www.ibm.com/cloud/learn/object-storage
https://www.ibm.com/cloud/learn/object-storage
https://www.ibm.com/cloud/learn/relational-databases
https://www.ibm.com/cloud/learn/relational-databases
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010/61-usability
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010/61-usability
https://lz4.github.io/lz4/
https://mathworks.com/products/matlab.html
https://doi.org/10.1109/CSE/EUC.2019.00067
https://clickhouse.com/blog/en/2021/clickhouse-inc/
https://clickhouse.com/blog/en/2021/clickhouse-inc/
https://docs.min.io/docs/distributed-minio-quickstart-guide.html
https://docs.min.io/docs/distributed-minio-quickstart-guide.html
https://hub.docker.com/layers/minio/minio/RELEASE.2021-11-03T03-36-36Z/images/sha256-65d1540c0ee7f34036a0013ed8e6740c6260da98822657492bed8eb4b27a491b?context=explore
https://hub.docker.com/layers/minio/minio/RELEASE.2021-11-03T03-36-36Z/images/sha256-65d1540c0ee7f34036a0013ed8e6740c6260da98822657492bed8eb4b27a491b?context=explore
https://hub.docker.com/layers/minio/minio/RELEASE.2021-11-03T03-36-36Z/images/sha256-65d1540c0ee7f34036a0013ed8e6740c6260da98822657492bed8eb4b27a491b?context=explore
https://hub.docker.com/layers/minio/minio/RELEASE.2021-11-03T03-36-36Z/images/sha256-65d1540c0ee7f34036a0013ed8e6740c6260da98822657492bed8eb4b27a491b?context=explore
https://docs.min.io/


REFERENCES

[78] MongoDB. What are ACID transactions? url: https://www.mongodb.com/basics/
acid-transactions (visited on Dec. 26, 2021).

[79] A B M Moniruzzaman and Syed Hossain. “NoSQL Database: New Era of Databases for
Big data Analytics - Classification, Characteristics and Comparison”. In: Int J Database
Theor Appl 6 (June 2013).

[80] Oracle. What is a relational database? url: https://www.oracle.com/database/
what-is-a-relational-database/ (visited on Sept. 24, 2021).

[81] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems. Springer
International Publishing, 2020. isbn: 9783030262525.

[82] Gautam Ray, Jayant R. Haritsa, and Sridhar Seshadri. “Database Compression: A Per-
formance Enhancement Tool”. In: COMAD. 1995.

[83] David Salomon and Giovanni Motta. Handbook of data compression. Springer, 2010. isbn:
9781282835993.

[84] Pavel Seda, Jiri Hosek, Pavel Masek, and Jiri Pokorny. “Performance testing of NoSQL
and RDBMS for storing big data in e-applications”. In: 2018 3rd International Conference
on Intelligent Green Building and Smart Grid (IGBSG). 2018, pp. 1–4. doi: 10.1109/
IGBSG.2018.8393559.

[85] Tanmay Sinha. OLAP vs. OLTP: What’s the Di�erence? 2021. url: https://www.ibm.
com/cloud/blog/olap-vs-oltp (visited on Oct. 18, 2021).

[86] Snappy contributors. README. url: https://github.com/google/snappy/
blob/master/docs/README.md (visited on Sept. 21, 2021).

[87] Stack Overflow. Databases - Stack Overflow Developer Survey 2021. 2021. url: https:
//insights.stackoverflow.com/survey/2021#section-most-popular-
technologies-databases (visited on Dec. 26, 2021).

[88] Michael Stonebraker. “SQL Databases v. NoSQL Databases”. In: Commun. ACM 53.4
(Apr. 2010), pp. 10–11. issn: 0001-0782.

[89] Alexey Struckov, Semen Yufa, Alexander A. Visheratin, and Denis Nasonov. “Evalua-
tion of modern tools and techniques for storing time-series data”. In: Procedia Computer
Science 156 (2019). 8th International Young Scientists Conference on Computational
Science, YSC2019, 24-28 June 2019, Heraklion, Greece, pp. 19–28. issn: 1877-0509.

[90] Matei-Eugen Vasile, Giuseppe Avolio, and Igor Soloviev. “Evaluating InfluxDB and
ClickHouse database technologies for improvements of the ATLAS operational moni-
toring data archiving”. In: Journal of Physics: Conference Series 1525 (Apr. 2020), p. 012027.

[91] Akila Wickramasekara, M.P.P. Liyanage, and Udayagee Kumarasinghe. “A comparative
study between the capabilities of MySQL and ClickHouse in low-performance Linux
environment”. In: 2020 20th International Conference on Advances in ICT for Emerging
Regions (ICTer). 2020, pp. 276–277. doi: 10.1109/ICTer51097.2020.9325483.

[92] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in Software Engineering. Springer Berlin Heidelberg, 2012.
isbn: 9783642290435.

58

https://www.mongodb.com/basics/acid-transactions
https://www.mongodb.com/basics/acid-transactions
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://doi.org/10.1109/IGBSG.2018.8393559
https://doi.org/10.1109/IGBSG.2018.8393559
https://www.ibm.com/cloud/blog/olap-vs-oltp
https://www.ibm.com/cloud/blog/olap-vs-oltp
https://github.com/google/snappy/blob/master/docs/README.md
https://github.com/google/snappy/blob/master/docs/README.md
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-databases
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-databases
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-databases
https://doi.org/10.1109/ICTer51097.2020.9325483


REFERENCES

[93] Vlad-Andrei Zamfir, Mihai Carabas, Costin Carabas, and Nicolae Tapus. “Systems
Monitoring and Big Data Analysis Using the Elasticsearch System”. In: 2019 22nd Inter-
national Conference on Control Systems and Computer Science (CSCS). 2019, pp. 188–193.
doi: 10.1109/CSCS.2019.00039.

[94] Paul Zikopoulos and Chris Eaton. Understanding big data: Analytics for enterprise class
Hadoop and streaming data. McGraw-Hill Osborne Media, 2011.

59

https://doi.org/10.1109/CSCS.2019.00039


REFERENCES

60



Appendices

61





Appendix A

Dedicated server setup

Table A.1: Hardware configuration for SERVER.

Purpose Description Quantity
CPU Intel Xeon-G 5220R FIO Kit for DL380 G10 1
RAM Module HPE 16 GB 1Rx4 PC4-2933Y-R Smart Kit 6
OS Disk Drive HPE 240 GB SATA RI SFF SC MV SSD 1
Data Disk Drive HPE 1.92 TB SATA RI SFF SC MV SSD 7
RAID Card HPE Smart Array P408i-a SR Gen10 Ctrlr 1
10 Gb Network Adapter HPE Ethernet 10Gb 2P 530T Adptr 1
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A. Dedicated server setup
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Appendix B

Initial setup

MinIO
$ docker run \
-p 9000:9000 \ # Expose the server port 9000.
-v /srv/minio:/data \ # Mount /srv/minio to /data in the container.
minio/minio:RELEASE.2021-11-03T03-36-36Z \
server /data # Run server and point to the mounted data path.

Elasticsearch
$ docker run -d \

--name elasticsearch \
-p 9200:9200 \
-e discovery.type=single-node \ # Form a single-node cluster.
-e ELASTIC_USER -e ELASTIC_PASSWORD \ # Pass variables to container.
--ulimit nofile=65536:65536 \
-v /srv/elasticsearch:/usr/share/elasticsearch/data \
docker.elastic.co/elasticsearch/elasticsearch:7.15.2

Clickhouse
$ docker run -d \

--name clickhouse \
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B. Initial setup

-p 9000:9000 \
--ulimit nofile=262144:262144 \
-v /srv/clickhouse:/var/lib/clickhouse \
clickhouse/clickhouse-server:21.8.11.4

CREATE TABLE thesis.memory
(

`Executable` Nullable(String),
`dirty` Nullable(Int64),
`lib` Nullable(Int64),
`name` Nullable(String),
`pid` Nullable(Int64),
`Pid` Nullable(Int64),
`Private_Clean` Nullable(Int64),
`Private_Dirty` Nullable(Int64),
`progres` Nullable(Int64),
`Pss` Nullable(Int64),
`Pss_Dirty` Nullable(Int64),
`Rss` Nullable(Int64),
`shared` Nullable(Int64),
`Shared_Clean` Nullable(Int64),
`Shared_Dirty` Nullable(Int64),
`starttime` Nullable(Int64),
`swap` Nullable(Int64),
`Swap` Nullable(Int64),
`SwapPss` Nullable(Int64),
`text` Nullable(Int64),
`totres` Nullable(Int64),
`proc_uptime` Nullable(Int64),
`sum_memory` Nullable(Int64),
`boot_id` String,
`Env` Nullable(String),
`idd_Acapversion` Nullable(String),
`origdocumentpath` Nullable(String),
`Product` Nullable(String),
`Firmware_Version` Nullable(String),
`SerialNumber` String,
`timestamp` DateTime,
`unused_field_1` Nullable(String),
`platform_id` Nullable(String)
`raw_document_source` Nullable(String),
`uptime` Nullable(Int64),
`unused_field_2` Nullable(Int64),

)
ENGINE = MergeTree
PARTITION BY toYYYYMM(toDate(timestamp))
ORDER BY timestamp
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Appendix C

Data extraction queries and scripts

Exp C.1.
MinIO
Not tested.

Elasticsearch
{

"aggs": {
"2": {

"terms": {
"field": "Firmware_Version.keyword",
"order": {

"1": "desc"
},
"size": 5

},
"aggs": {

"1": {
"avg": {

"field": "memory.Private_Dirty"
}

},
"3": {
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C. Data extraction queries and scripts

"terms": {
"field": "memory.Executable.keyword",
"order": {

"1": "desc"
},
"size": 5

},
"aggs": {

"1": {
"avg": {

"field": "memory.Private_Dirty"
}

}
}

}
}

}
},
"size": 0,
"query": {

"bool": {
"filter": [

{
"range": {

"@timestamp": {
"gte": "2021-08-01T00:00:00.000Z",
"lte": "2021-11-01T00:00:00.000Z",
"format": "strict_date_optional_time"

}
}

}
]

}
}

}

ClickHouse
SELECT

Firmware_Version,
Executable,
avg(Private_Dirty)

FROM thesis.test
WHERE Firmware_Version IN (

SELECT Firmware_Version
FROM thesis.test
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GROUP BY Firmware_Version
ORDER BY avg(Private_Dirty) DESC
LIMIT 5

)
GROUP BY

Executable,
Firmware_Version

ORDER BY avg(Private_Dirty) DESC
LIMIT 5 BY Firmware_Version

Exp C.2.
MinIO
Not tested.

Elasticsearch
{

"aggs": {
"2": {

"date_histogram": {
"field": "@timestamp",
"calendar_interval": "1d",
"time_zone": "Europe/Stockholm",
"min_doc_count": 1

},
"aggs": {

"1": {
"avg": {

"field": "memory.Pss_Dirty"
}

}
}

}
},
"size": 0,
"query": {

"bool": {
"filter": [

{
"match_phrase": {

"target.SerialNumber": "A1A1A1A1A1A1"
}

},
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C. Data extraction queries and scripts

{
"range": {

"@timestamp": {
"gte": "2021-07-01T00:00:00.000Z",
"lte": "2021-09-01T02:00:00.000Z",
"format": "strict_date_optional_time"

}
}

}
]

}
}

}

ClickHouse
SELECT

toDate(timestamp, 'Europe/Stockholm') AS date,
avg(Pss_Dirty)

FROM thesis.test
WHERE SerialNumber = 'A1A1A1A1A1A1'
GROUP BY date
ORDER BY date

Exp C.3.
MinIO
Not tested.

Elasticsearch
{

"aggs": {
"2": {

"date_histogram": {
"field": "@timestamp",
"calendar_interval": "1h",
"time_zone": "Europe/Stockholm",
"min_doc_count": 1

},
"aggs": {

"3": {
"terms": {

"field": "target.Product.keyword",
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"order": {
"1": "desc"

},
"size": 15

},
"aggs": {

"1": {
"cardinality": {

"field": "target.SerialNumber.keyword"
}

}
}

}
}

}
},
"size": 0,
"query": {

"bool": {
"filter": [

{
"range": {

"@timestamp": {
"gte": "2021-07-01T00:00:00.000Z",
"lte": "2021-08-01T02:00:00.000Z",
"format": "strict_date_optional_time"

}
}

}
]

}
}

}

ClickHouse
SELECT

dateTrunc(
'hour',
timestamp,
'Europe/Stockholm'

) AS date,
countDistinct(SerialNumber),
Product,
count(*)

FROM thesis.test
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C. Data extraction queries and scripts

WHERE (date >= '2021-08-01') AND (date <= '2021-08-07')
GROUP BY

date,
Product

ORDER BY date ASC

Exp C.4.
MinIO
Not tested.

Elasticsearch
{

"aggs": {
"2": {

"terms": {
"field": "target.Product.keyword",
"order": {

"1": "desc"
},
"size": 10

},
"aggs": {

"1": {
"avg": {

"field": "memory.Pss_Dirty"
}

}
}

}
},
"size": 0,
"query": {

"bool": {
"filter": [

{
"match_phrase": {

"memory.Executable.keyword": "program1"
}

},
{

"range": {
"@timestamp": {
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"gte": "2021-07-01T00:00:00.000Z",
"lte": "2021-11-01T02:00:00.000Z",
"format": "strict_date_optional_time"

}
}

}
]

}
}

}

ClickHouse
SELECT

Product,
avg(Pss_Dirty)

FROM thesis.test
WHERE Executable = 'program1'
GROUP BY Product
ORDER BY avg(Pss_Dirty) DESC
LIMIT 10

Exp C.9.
To test raw data extraction, we decided to fetch ten hours worth of data from our two month
range. For simplicity, we chose the first ten hours chronologically.

MinIO
$ rclone copy \

--include 'hour=[0-9]/*.parquet' \
--include 'hour=10/*.parquet' \
--transfers 12 --checkers 12 \
minio:bucket/memory/year=2021/month=8/day=1 \
/path/to/local/data

ClickHouse
$ clickhouse-client --query \

"SELECT *
FROM thesis.test
WHERE timestamp < '2021-08-01 10:00:00'
FORMAT Parquet" \

> data.parquet
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C. Data extraction queries and scripts

Elasticsearch
Since there is no built in support for raw extraction, we wrote a Python script to extract all
data using the o�cial Elasticsearch library. The scan method used is an abstraction over the
scroll API, and fetches 10,000 results (the max size) per request and stores them in memory.
When 5,000,000 results have been fetched, the JSON documents are dumped to file.

import json
from elasticsearch import Elasticsearch, helpers

def write_to_file(results, index):
# json.dumps(list) is faster than json.dump(list, file)
# if we have the memory available for it.
serialized = json.dumps(results)
with open(f"es-dump-{index}.json", "w") as out:

out.write(serialized)

query = {
"query": {

"bool": {
"must": {

"match_all": {}
},
"filter": [

{
"range": {

"@timestamp": {
"lt": "2021-08-01T10:00:00.000Z",
"format": "strict_date_optional_time"

}
}

}
]

}
}

}

es, index, results = Elasticsearch(ES_ENDPOINT_URL), 0, []
for hit in helpers.scan(es, query, index=ES_INDEX_NAME, size=10000):

results.append(hit)
if len(results) >= 5000000:

write_to_file(results, index)
results = []
index += 1

if len(results) > 0:
write_to_file(results, index)
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Appendix D

Raw results

Exp A: Ingest
Table D.1: Exp A: Ingest. Transfer time in seconds.

MINIO ELASTIC CLICKH
Run 1 1,389 45,354 1,977
Run 2 1,390 45,707 1,986
Run 3 1,387 45,707 2,002

Exp B: Storage
Table D.2: Exp B: Storage use in GB. Measurements immediately
after ingest are noted in parentheses.

MINIO ELASTIC CLICKH
Run 1 152 620 (622) 186 (280)
Run 2 152 620 (624) 186 (357)
Run 3 152 621 (626) 186 (370)

Exp C: Extraction rate
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D. Raw results

Table D.3: Exp C.1. Execution time in seconds.

ELASTIC CLICKH
Run 1 39.468872037 7.636695946
Run 2 39.505596954 7.454333315
Run 3 39.850363293 8.712967669
Run 4 39.424436749 7.441369848
Run 5 39.178884600 7.432631532
Run 6 39.471937193 7.474382540
Run 7 39.766114013 7.528771817
Run 8 40.032892012 7.547876603
Run 9 39.693789813 7.600013086
Run 10 39.857188351 7.471453874

Table D.4: Exp C.2. Execution time in seconds.

ELASTIC CLICKH
Run 1 3.697920456 4.581286327
Run 2 0.043449516 4.918519457
Run 3 0.038520861 4.594558699
Run 4 0.047978713 4.488945893
Run 5 0.044014322 4.547258952
Run 6 0.041242109 4.556078396
Run 7 0.047741518 4.527704714
Run 8 0.041057660 4.577401036
Run 9 0.041675885 4.561963036
Run 10 0.041389254 4.674475131

Table D.5: Exp C.3. Execution time in seconds.

ELASTIC CLICKH
Run 1 226.086654555 15.750639980
Run 2 233.504078026 16.158404735
Run 3 231.442777261 15.960129853
Run 4 234.547322732 16.347730252
Run 5 233.602792717 15.945108092
Run 6 232.415022596 16.280487336
Run 7 233.577138135 16.323002607
Run 8 233.659388246 16.268199078
Run 9 234.726147362 16.255170123
Run 10 235.292303323 16.003353958

76



Table D.6: Exp C.4. Execution time in seconds.

ELASTIC CLICKH
Run 1 5.755578149 5.985482376
Run 2 0.700347428 5.226242395
Run 3 0.742086227 5.242065391
Run 4 0.724358475 5.198093403
Run 5 0.739347438 5.659624115
Run 6 0.722640143 5.303758468
Run 7 0.730048692 5.257330676
Run 8 0.719913420 5.365259020
Run 9 0.726058374 5.277200862
Run 10 0.716483587 5.129347874

Table D.7: Exp C.5. Execution time in seconds.

ELASTIC CLICKH
Run 1 630.004861692 55.528402794
Run 2 637.778929173 55.572750402
Run 3 637.397820415 54.998032722
Run 4 640.105377256 55.050438133
Run 5 639.957177130 55.243229576
Run 6 637.910285159 55.129427660
Run 7 638.830093734 55.128641317
Run 8 639.067251362 55.631400112
Run 9 636.823579986 55.113933356
Run 10 637.546283469 56.069277844

Table D.8: Exp C.6. Execution time in seconds.

ELASTIC CLICKH
Run 1 175.590842876 30.310682879
Run 2 170.384822259 30.256843198
Run 3 170.384735087 30.221557260
Run 4 170.659342415 30.239793664
Run 5 190.727321452 30.189139850
Run 6 190.851733102 30.256216953
Run 7 191.054955104 30.252177672
Run 8 191.055224827 30.354546402
Run 9 191.190239079 30.236794986
Run 10 191.186323135 30.293447664
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D. Raw results

Table D.9: Exp C.7. Execution time in seconds.

ELASTIC CLICKH
Run 1 1,895.244063637 Failed (ran out of memory) after 47.373851170
Run 2 1,894.536010459 Failed (ran out of memory) after 45.131942059
Run 3 1,890.798993381 Failed (ran out of memory) after 47.834385013
Run 4 1,888.702138128 Failed (ran out of memory) after 48.599351006
Run 5 1,932.319168396 Failed (ran out of memory) after 47.305670480
Run 6 1,957.877363136 Failed (ran out of memory) after 48.190600892
Run 7 1,954.396968247 Failed (ran out of memory) after 43.843315295
Run 8 1,957.680313553 Failed (ran out of memory) after 48.640711598
Run 9 1,956.925801334 Failed (ran out of memory) after 45.747029421
Run 10 1,957.513382523 Failed (ran out of memory) after 46.900910119

Table D.10: Exp C.8. Execution time in seconds.

ELASTIC CLICKH
Run 1 295.167762173 34.951629579
Run 2 265.789655374 34.784797738
Run 3 245.815007772 34.863814788
Run 4 246.440271029 34.818451851
Run 5 246.567408145 34.917577236
Run 6 247.065249239 34.868013454
Run 7 246.340014285 34.862011670
Run 8 247.088031550 34.776979904
Run 9 246.485076440 34.764945120
Run 10 247.633355723 34.741739745

Table D.11: Exp C.9. Transfer time in seconds.

MINIO ELASTIC CLICKH
Run 1 71.015762598 5,528.452644635 367.570235226
Run 2 71.106565528 5,616.393959781 372.213909726
Run 3 71.391599332 5,448.884645142 365.013800481
Run 4 71.114836013 5,513.881490003 372.415507810
Run 5 71.472710631 5,454.653877125 366.843512232
Run 6 71.279200327 5,610.239802356 371.603499119
Run 7 71.034284177 5,618.170198987 366.140639713
Run 8 71.036471405 5,505.952754833 360.973810885
Run 9 71.017811756 5,786.973985060 361.321421024
Run 10 71.018076605 5,664.184136904 361.943817915
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ClickHouse för skalbar analys och
lagring av massiva mängder data

POPULÄRVETENSKAPLIG SAMMANFATTNING Adrian Göransson, Oskar Wändesjö

Insamling och analys av stora mängder data för Business Intelligence är idag inget
ovanligt. Insamlingen av data har ökat i aggressiv takt, och i samband med detta
har utmaningar att skala upp sin analys- och lagringskapacitet vuxit. Detta arbete har
undersökt hur ClickHouse, en kolumnbaserad databas, kan ta sig an dessa utmaningar.

För att få insyn och kunna basera beslut på stora
mängder data krävs det att man har en välpla-
nerad infrastruktur som låter en lagra och hämta
data på ett effektivt sätt. Relationsdatabasen är
en väl beprövad lagringsmodell som funnits sedan
70-talet, där data sparas som rader i olika tabeller.
Modellen erbjuder strikta garantier för integrite-
ten av inmatad data och är väl lämpad för många
och små transaktioner där en blandning av ope-
rationer som läser, skapar eller uppdaterar data
görs. I större system, där datan som matas in inte
kommer att förändras, utan bara läsas, exempel-
vis metrikdata för analys, kan dock dessa strikta
garantier istället leda till prestandaproblem.
De senaste 15 åren har flertalet databaser som

gått från den radbaserade tabellmodellen utveck-
lats i olika former, till exempel dokumentdataba-
ser och grafdatabaser. De erbjuder oftast inte sam-
ma strikta garantier som relationsdatabasen, och
kan därför prestera bra även vid uppskalning.
ClickHouse är en kolumnbaserad databas som

ursprungligen utvecklats av Yandex, Rysslands
största internetbolag, men som hösten 2021 av-
knoppades till ett amerikanskt bolag i ClickHouse
Inc. ClickHouse är specialanpassat för höga skriv
och läshastigheter och utlovar mycket effektiv lag-
ring optimerad för många typer av data.

I detta arbete testade vi ClickHouse hos Axis,
ett företag som samlar in stora mängder metrik-
data från en bred flotta med IoT-enheter (Internet
of Things). Analysavdelningen har stött på utma-
ningarna att skala upp sin analys, som primärt
beror på deras val av datalagringslösning.
Vi utformade en experimentell testsvit för att

undersöka främst hur ClickHouse stod sig mot da-
gens lösning i form av sökdatabasen Elasticsearch.
Vi testade inmatning och läsning av metrikdata,
samt hur effektivt de olika subjekten lagrade data.

Inmatning Läsning Lagring
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Figur 1: Relativa prestandaresultat i olika tester
för ClickHouse (blå), och Elasticsearch (röd).

Våra resultat visade att ClickHouse i snitt var
22 och 6,4 gånger snabbare än Elasticsearch i in-
matning respektive läsning samt 3,3 gånger mer
effektiv på att lagra datan.
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